4 типа сил в физике. Школьная энциклопедия


Чтобы понять, стоит ли продолжать писать короткие этюды, объясняющие буквально на пальцах разные физические явления и процессы. Результат развеял мои сомнения. Продолжу. Но чтобы подойти к довольно сложным явлениям придется делать отдельные последовательные серии постов. Так, чтобы дойти до рассказа об устройстве и эволюции Солнца и других типов звезд придется начать с описания типов взаимодействия между элементарными частичами. С этого и начнем. Без формул.
Всего в физике известно четыре типа взаимодействия. Хорошо знакомые все гравитационное и электромагнитное . И почти неизвестные широкой публике сильное и слабое . Опишем их последовательно.
Гравитационное взаимодействие . Человек знаком с ним издревле. Ибо постоянно находится в поле тяжести Земли. А из школьной физики мы знаем, что сила гравитационного взаимодействия между телами пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Под воздействием гравитационной силы Луна вращается вокруг Земли, Земля и другие планеты - вокруг Солнца, а последнее вместе с другими звездами - вокруг центра нашей Галактики.
Довольно медленное убывание силы гравитационного взаимодействия с расстоянием (обратно пропорционально квадрату расстояния) заставляет физиков говорить об этом взаимодействии как о дальнодействующем . Кроме того, действующие между телами силы гравитационного взаимодействия являются только силами притяжения.
Электромагнитное взаимодействие . В самом простейшем случае электростатического взаимодействия, как мы знаем из школьной физики, сила притяжения или отталкивания между электрически заряженными частицами пропорциональна произведению их электрических зарядов и обратно пропорциональна квадрату расстояния между ними. Что очень похоже на закон гравитационного взаимодействия. Отличие лишь в том, что электрические заряды с одинаковыми знаками отталкиваются, а с разными - притягиваются. Поэтому электромагнитное взаимодействие, как и гравитационное, физики называют дальнодействующим .
В то же время электромагнитное взаимодействие сложнее гравитационного. Из школьной физики мы знаем, что электрическое поле создается электрическими зарядами, магнитных зарядов в природе не существует, а магнитное поле создается электрическими токами.
На самом деле электрическое поле может создаваться еще и изменяющимся во времени магнитным полем, а магнитное поле - изменяющимся во времени электрическим полем. Последнее обстоятельство дает возможность существовать электромагнитному полю вообще без электрических зарядов и токов. И эта возможность реализуется в виде электромагнитных волн. Например, радиоволн и квантов света.
Из-за одинаковой зависимости от расстояния электрических и гравитационных сил естественно попытаться сравнить их интенсивности. Так, для двух протонов силы гравитационного притяжения оказываются в 10 в 36-й степени раз (миллиард миллиардов миллиардов миллиардов раз) слабее сил электростатического отталкивания. Поэтому в физике микромира гравитационным взаимодействием вполне обоснованно можно пренебрегать.
Сильное взаимодействие . Это - близкодействующие силы. В том смысле, что они действуют на расстояниях только порядка одного фемтометра (одной триллионной части миллиметра), а на больших расстояниях их влияние практически не ощущаются. Более того, на расстояниях порядка одного фемтометра сильное взаимодействие примерно в сотню раз интенсивнее электромагнитного.
Именно поэтому одинаково электрически заряженные протоны в атомном ядре не отталкиваются друг от друга электростатическими силами, а удерживаются вместе сильным взаимодействием. Поскольку размеры протона и нейтрона составляют около одного фемтометра.
Слабое взаимодействие . Оно действительно очень слабое. Во-первых, оно действует на расстояниях в тысячу раз меньших одного фемтометра. А на больших расстояниях практически не ощущается. Поэтому оно, как и сильное, принадлежит к классу близкодействующих . Во-вторых, его интенсивность примерно в сотню миллиардов раз меньше интенсивности электромагнитного взаимодействия. Слабое взаимодействие отвечает за некоторые распады элементарных частиц. В том числе - свободных нейтронов.
Существует лишь один тип частиц, которые взаимодействуют с веществом только через слабое взаимодействие. Это - нейтрино. Через каждый квадратный сантиметр нашей кожи ежесекундно проходит почти сотня миллиардов солнечных нейтрино. И мы их совершенно не замечаем. В том смысле, что за время нашей жизни вряд ли несколько штук нейтрино провзаимодействует с веществом нашего тела.
Говорить же о теориях, описывающих все эти типы взаимодействий не будем. Ибо для нас важна качественная картина мира, а не изыски теоретиков.

1. Силы в природе:

а) упругость;

б) трение;

в) сила тяжести;

2. Закон всемирного тяготения;

3. Невесомость

1. В окружающем нас мире бесчисленное количество тел, которые взаимодействуют друг с другом. Но, несмотря на многообразие сил, принято выделять несколько их видов.

Силой упругости называют силу, которая возникает в теле при изменении его формы или размеров. Это происходит, если тело сжимают, растягивают, изгибают или скручивают. Например, сила упругости, возникшая в пружине, действует на кирпич. Она возникла в результате сжатия пружины.

Сила упругости всегда направлена противоположно той силе, которая вызвала изменение формы или размеров тела. В нашем примере упавший кирпич сжал пружину, то есть подействовал на нее с силой, направленной вниз. В результате в пружине возникла сила упругости, направленная в противоположную сторону, то есть вверх.

Силой тяготения называют силу, с которой все тела в мире притягиваются друг к другу. Разновидностью силы тяготения является сила тяжести – сила, с которой тело, находящееся вблизи какой-либо планеты, притягивается к ней. Например, ракета, стоящая на Марсе, притягивается к нему – на ракету действует сила тяжести.

Сила тяжести всегда направлена к центру планеты. Например, Земля притягивает мальчика и мяч с силами, направленными вниз, то есть к центру планеты.

Силой трения называют силу, препятствующую проскальзыванию одного тела по поверхности другого. Резкое торможение автомобиля сопровождается «визгом тормозов». Он возникает из-за проскальзывания шин по поверхности асфальта. При этом между колесом и дорогой действует сила трения, препятствующая такому проскальзыванию.

Сила трения всегда направлена противоположно направлению проскальзывания рассматриваемого тела по поверхности другого. Например, при торможении автомобиля его колеса проскальзывают вперед, значит, действующая на них сила трения о дорогу направлена в противоположную сторону, то есть назад.

Выталкивающей силой (или силой Архимеда) называют силу, с которой жидкость или газ действуют на погруженное в них тело. Вода в пруду действует на пузырьки воздуха – выталкивает их на поверхность. Вода также действует на рыбу и камни – подталкивает их вверх, уменьшая их вес (силу, с которой камни давят на дно пруда). Архимедова сила обычно направлена вверх, противоположно силе тяжести.

2. Ньютоновский закон всемирного тяготения для силы, действующей между двумя телами с массами m 1 и m 2 , записывается следующим образом:

F=G ,

Где r – расстояние между телами, G= 6,67 Н - гравитационная постоянная (1 Н = 1 ньютон – это величина силы, с которой Земля притягивает тело массой 0,1 кг, находящееся на её поверхности).

Сила гравитационного притяжения между телами, размеры которых значительно меньше расстояния между ними, прямо пропорционально их массам, обратно пропорционально квадрату расстояния между ними и направлено вдоль соединяющей их прямой.

Гравитационная постоянная является мировой константой, её определение возможно при проведении прямых лабораторных опытов по измерению силы гравитационного притяжения двух известных масс. Впервые опыт по определению G был поставлен Г. Кавендишем в 1797 г. зная величину G, можно определить массу Земли, массы других планет Солнечной системы, массу Солнца. Для определения массы Солнца необходимо знать расстояние от Земли до Солнца и время, за которое Земля совершает один оборот вокруг Солнца.

Закон всемирного тяготения позволил Ньютону дать количественное объяснение движению планет вокруг Солнца и Луны вокруг Земли, понять природу морских приливов.

Еще до того как Ньютон постулировал закон всемирного тяготения, И. Кеплер, анализируя движения планет Солнечной системы, предложил три простых закона, очень точно описывающих эти движения не только для всех планет, но и для их спутников.

Лекция № 4

Тема: 1.1.3. Импульс. Закон сохранения импульса и

Реактивное движение

План:

1. Общее понятие. Импульс тела;

2. Закон сохранения импульса;

3. Реактивное движение.

1. Определение: импульсом (количеством движением) тела р называется произведение массы на его скорость.

Мы знаем, что причиной изменения скорости тела является действия других тел. Выясним, какая сила требуется для того, чтобы за время t увеличить скорость тела от 0 до некоторого значения υ . По второму закону Ньютона F=ma , и согласно формуле a=υ/t

Таким образом,

F = mv/t

В правую часть полученного выражения входит произведение массы тела на его скорость. Обозначим это произведение p :

Физическая величина, равная произведению массы тела на его скорость, называется импульсом тела:

р - импульс тела.

Если тело покоится, то его импульс равен нулю. При увеличении скорости импульс возрастает.

Импульс-величина векторная.

Единицей импульса в СИ является килограмм-метр в секунду (1 кг м/с)

Понятие импульса была ведено введено в физику Рене Декартом (1596-1650). Сам Декарт назвал эту величину не импульсом, а количеством движения.

2. Для импульса справедлив фундаментальный закон природы, называемый законом сохранения импульса (или количества движения). Открывший этот закон Декарт в одном из своих писем написал: «Я принимаю, что во Вселенной, во всей созданной материи есть известное количество движения, которое никогда не увеличивается, не уменьшается, и, таким образом, если одно тело приводит в движение другое, то теряет столько своего движения, сколько его сообщает»

В наиболее простом случае закон сохранения импульса может быть сформулирован следующим образом.

«Физика - 10 класс»

В главе 2 мы ввели понятие силы как количественной меры действия одного тела на другое.
В этой главе мы рассмотрим, какие силы рассматриваются в механике, чем определяются их значения.

Много ли видов сил существует в природе?
Перечислите известные вам силы.
Какую природу они имеют - гравитационную или электромагнитную?

На первый взгляд кажется, что мы взялись за непосильную и неразрешимую задачу: тел на Земле и вне её бесконечное множество.
Они взаимодействуют по-разному.

Ядерные силы действуют между частицами в атомных ядрах и определяют свойства ядер.

Область действия ядерных сил очень ограничена.

Они заметны только внутри атомных ядер (т. е. на расстояниях порядка 10 -15 м).
Уже на расстояниях между частицами порядка 10 -13 м (в тысячу раз меньших размеров атома - 10 -10 м) они не проявляются совсем.

Слабые взаимодействия вызывают взаимные превращения элементарных частиц, определяют радиоактивный распад ядер, реакции термоядерного синтеза.

Они проявляются на ещё меньших расстояниях, порядка 10 -17 м.

Ядерные силы - самые мощные в природе.

Если интенсивность ядерных сил принять за единицу, то интенсивность электромагнитных сил составит 10 -2 , гравитационных - 10-40, слабых взаимодействий - 10 -16 .

Сильные (ядерные) и слабые взаимодействия проявляются на таких малых расстояниях, когда законы механики Ньютона, а с ними вместе и понятие механической силы теряют смысл.

Интенсивность сильного и слабого взаимодействий измеряется в единицах энергии (в электрон-вольтах), а не единицах силы, и потому применение к ним термина «сила» объясняется многовековой традицией все явления в окружающем мире объяснять действием характерных для каждого явления «сил».

В механике мы будем рассматривать только гравитационные и электромагнитные взаимодействия.


Силы в механике.


В механике обычно имеют дело с тремя видами сил - силами тяготения, силами упругости и силами трения.


Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский




Динамика - Физика, учебник для 10 класса - Класс!ная физика

В природе существует много разных видов сил: тяготения, тяжести, Лоренца, Ампера, взаимодействия неподвижных зарядов и т.д., но все они в конечном счете сводятся к небольшому числу фундаментальных (основных) взаимодействий. Современная физика считает, что существует в природе лишь четыре вида сил или четыре вида взаимодействий:

1) гравитационное взаимодействие (осуществляется через гравитационные поля);

2) электромагнитное взаимодействие (осуществляется через электромагнитные поля);

3) ядерное (или сильное) (обеспечивает связь частиц в ядре);

4) слабое (отвечает за процессы распада элементарных частиц).

В рамках классической механики имеют дело с гравитационными и электромагнитными силами, а также с упругими силами и силами трения.

Гравитационные силы (силы тяготения) – это силы притяжения, которые подчиняются закону всемирного тяготения. Любые два тела притягиваются друг к другу с силой, модуль которой прямо пропорционален произведению их масс и обратно пропорционален квадрату расстояния между ними:

где =6,67×10 –11 Н×м 2 /кг 2 – гравитационная постоянная.

Сила тяжести – сила, с которой тело притягивается Землей. Под действием силы притяжения к Земле все тела падают с одинаковым относительно поверхности Земли ускорением , называемым ускорением свободного падения. По второму закону Ньютона, на всякое тело действует сила , называемая силой тяжести. Она приложена к центру тяжести.

Вес с ила, с которой тело, притягиваясь к Земле, действует на подвес или опору. В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес – это упругая сила, приложенная к опоре или подвесу. Сила тяжести равна весу только в том случае, когда опора или подвес неподвижны относительно Земли. По модулю вес может быть как больше, так и меньше силы тяжести . В случае ускоренного движения опоры (например, лифта, везущего груз) уравнение движения (с учетом того, что сила реакции опоры равна по величине весу, но имеет противоположный знак ): Þ . Если движение происходит вверх , вниз: .

При свободном падении тела его вес равен нулю, т.е. оно находится в состоянии невесомости.

Силы упругости возникают в результате взаимодействия тел, сопровождающегося их деформацией. Упругая (квазиупругая) сила пропорциональна смещению частицы из положения равновесия и направлена к положению равновесия:

Силы трения возникают благодаря существованию сил взаимодействия между молекулами и атомами соприкасающихся тел. Силы терния: а) возникают при соприкосновении двух движущихся тел; б) действуют параллельно поверхности соприкосновения; г) направлены против движения тела.

Трение между поверхностями твердых тел при отсутствии какой-либо прослойки или смазки называется сухим . Трение между твердым телом и жидкой или газообразной средой, а также между слоями такой среды называется вязким или жидким. Различают три вида сухого трения: трение покоя, трение скольжения и трение качения.

Сила трения покоя – это сила, действующая между соприкасающимися телами, находящимися в состоянии покоя. Она равна по величине и противоположно направлена силе, понуждающей тело к движению: ; , где m – коэффициент трения.

Сила трения скольжения возникает при скольжении одного тела по поверхности другого: и направлена по касательной к трущимся поверхностям в сторону, противоположную движению данного тела относительно другого. Коэффициент трения скольжения зависит от материала тел, состояния поверхностей и от относительной скорости движения тел.

При качении тела по поверхности другого возникает сила трения качения , которая препятствует качению тела. Сила трения качения при тех же материалах соприкасаемых тел всегда меньше силы трения скольжения. Этим пользуются на практике, заменяя подшипники скольжения шариковыми или роликовыми подшипниками.

Упругие силы и силы трения определяются характером взаимодействия между молекулами вещества, которое имеет электромагнитное происхождение, следовательно, они по своей природе имеют электромагнитные происхождения. Гравитационные и электромагнитные силы являются фундаментальными – их нельзя свести к другим, более простым силам. Упругие силы и силы трения не являются фундаментальными. Фундаментальные взаимодействия отличаются простотой и точностью законов.

В природе существует четыре типа сил: гравитационные, электромагнитные, ядерные и слабые.

Гравитационные силы, или силы тяготения, действуют между всеми телами. Но эти силы заметны, если хотя бы одно из тел имеет размеры, соизмеримые с размерами планет. Силы притяжения между обычными телами настолько малы, что ими можно пренебречь. Поэтому гравитационными можно считать силы взаимодействия между планетами, а также между планетами и Солнцем или другими телами, имеющими очень большую массу. Это могут быть звёзды, спутники планет и т.п.

Электромагнитные силы действуют между телами, имеющими электрический заряд.

Ядерные силы (сильные) являются самыми мощными в природе. Они действуют внутри ядер атомов на расстояниях 10 -13 см.

Слабые силы , как и ядерные, действуют на малых расстояниях порядка 10 -15 см. В результате их действия происходят процессы внутри ядра.

Механика рассматривает гравитационные силы, силы упругости и силы трения.

Гравитационные силы

Гравитация описывается законом всемирного тяготения. Этот закон был изложен Ньютоном в середине XVII в. в работе «Математические начала натуральной философии».

Гравитацией называют силу тяготения, с которой любые материальные частицы притягиваются друг у другу.

Сила, с которой материальные частицы притягиваются друг к другу, прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними .

G – гравитационная постоянная, численно равная модулю силы тяготения, с которой тело, имеющее единичную массу, действует на тело, имеющее такую же единичную массу и находящееся на единичном расстоянии от него.

G = 6,67384(80)·10 −11 м 3 ·с −2 ·кг −1 , или Н·м²·кг −2 .

На поверхности Земли сила гравитации (сила тяготения) проявляется в виде силы тяжести .

Мы видим, что любой предмет, брошенный в горизонтальном направлении, всё равно падает вниз. Падает вниз также и любой предмет, подброшенный вверх. Происходит это под действием силы тяжести, которая действует на любое материальное тело, находящееся вблизи поверхности Земли. Сила тяжести действует на тела и на поверхности других астрономических тел. Эта сила всегда направлена вертикально вниз.

Под действием силы тяжести тело движется к поверхности планеты с ускорением, которое называется ускорением свободного падения .

Ускорение свободного падения на поверхности Земли обозначается буквой g .

F t = mg ,

следовательно,

g = F t / m

g = 9, 81 м/с 2 на полюсах Земли, а на экваторе g = 9,78 м/с 2 .

При решении простых физических задач величину g принято считать равной 9,8 м/с 2 .

Классическая теория тяготения применима только для тел, имеющих скорость намного ниже скорости света.

Силы упругости

Силами упругости называются силы, которые возникают в теле в результате деформации, вызывающей изменение его формы или объёма. Эти силы всегда стремятся вернуть тело в его первоначальное положение.

При деформации происходит смещение частиц тела. Сила упругости направлена в сторону, противоположную направлению смещения частиц. Если деформация прекращается, сила упругости исчезает.

Английский физик Роберт Гук, современник Ньютона, открыл закон, устанавливающий связь между силой упругости и деформацией тела.

При деформации тела возникает сила упругости, прямо пропорциональная удлинению тела, и имеющая направление, противоположное перемещению частиц при деформации.

F = k l ,

где к – жёсткость тела, или коэффициент упругости;

l – величина деформации, показывающая величину удлинения тела под воздействием сил упругости.

Закон Гука действует для упругих деформаций, когда удлинение тела мало, а тело восстанавливает свои первоначальные размеры после того, как исчезают силы, вызвавшие эту деформацию.

Если деформация велика, и тело не возвращается в свою исходную форму, закон Гука не применяется. При очень больших деформациях происходит разрушение тела.

Силы трения

Сила трения возникает, когда одно тело движется по поверхности другого. Она имеет электромагнитную природу. Это следствие взаимодействия между атомами и молекулами соприкасающихся тел. Направление силы трения противоположно направлению движения.

Различают сухое и жидкое трение. Сухим называют трение, если между телами нет жидкой или газообразной прослойки.

Отличительная особенность сухого трения – трение покоя, которое возникает при относительном покое тел.

Величина силы трения покоя всегда равна величине внешней силы и направлена в противоположную сторону. Сила трения покоя препятствует движению тела.

В свою очередь, сухое трение разделяется на трение скольжения и трение качения .

Если величина внешней силы превышает величину силы трения, то в этом случае появится проскальзывание, и одно из контактирующих тел начнёт поступательно перемещаться относительно другого тела. А сила трения будет называться силой трения скольжения . Её направление будет противоположно направлению скольжения.

Сила трения скольжения зависит от силы, с которой тела давят друг на друга, от состояния трущихся поверхностей, от скорости движения, но не зависит от площади соприкосновения.

Сила трения скольжения одного тела по поверхности другого вычисляется по формуле:

F тр. = k · N ,

где k – коэффициент трения скольжения;

N – сила нормальной реакции, действующая на тело со стороны поверхности.

Сила трения качения возникает между телом, которое перекатывается по поверхности, и самой поверхностью. Такие силы появляются, например, при соприкосновении шин автомобиля с дорожным покрытием.

Величина силы трения качения вычисляется по формуле

где F t – сила трения качения;

f – коэффициент трения качения;

R – радиус катящегося тела;

N – прижимающая сила.