Безопасная тренировка для суставов: лучшие способы. Срочная и долговременная адаптация к физическим нагрузкам Мышечная адаптация к силовым нагрузкам


Регулярные физические нагрузки на организм приводят к видимым результатам за счет адаптации мышечной ткани. Причем клетки скелетных мышц адаптируются к любому типу воздействия, будь то нагрузка или бездействие. Просто в случае нагрузки изменится выработка АТФ из-за увеличения числа ферментов, а в результате роста плотности миофибрилл, возрастут силовые показатели и диаметр мышечного волокна. Когда же организм находится в состоянии бездействия, способность к образованию АТФ вместе с количеством ферментов энергетических путей снижается, соответственно, снижается плотность миофибрилл и диаметр мышечного волокна.

Адаптация к разному типу нагрузок при тренировке может проходить по-разному. Рассмотрим два сценария развития событий.

Адаптация к упражнениям на выносливость

При выполнении упражнений на повышение выносливости используется принцип неинтенсивной, но продолжительной нагрузки. К таким типам нагрузок, как правило, относят бег и продолжительное плавание.

Адаптация мышечной ткани в данном случае будет проходить как снижение диаметра мышечного волокна и незначительное уменьшение показателя его силы. При этом, так как на выносливость организма прямое влияние оказывает гликоген, вырабатываемый перед непосредственным выполнением упражнений, уровень выработки АТФ при достижении цели увеличения выносливости возрастает.

Физическая нагрузка на увеличение выносливости способствует увеличению числа капилляров, окутывающих мышечные волокна. В целом, улучшается состояние мышцы за счет лучшей работы дыхательной и кровеносно-сосудистой систем. Но, при этом, не стоит забывать, что упражнения на выносливость имеют два направления: эксцентрические и концентрические. В первом случае, при всех плюсах данного вида нагрузок, когда на мышцу оказывается воздействие, при котором она вынуждена сопротивляться удлинению, возможно получение микроразрывов ткани. К таким упражнениям можно отнести ходьбу под уклон.

Адаптация к высокоинтенсивным нагрузкам

При кратковременной, но высокоинтенсивной нагрузке в мышцах (а данный тип упражнений направлен на быстрые волокна) увеличивается синтез таких веществ, как актин и миозин (волокна). Это способствует увеличению плотности миофибрилл, что, в свою очередь, повышает показатели силы мышечного волокна и увеличивает его диаметр.

В связи с тем, что разные направления физических нагрузок имеют различное влияние на показатели мышц по силе и выносливости, нужно выбрать тот тип, который поможет достичь поставленной цели. Однако, стоит помнить, что при прекращении тренировок, мышца адаптируется под бездействие организма и вернется к первоначальным показателям.

В ответ на силовые тренировки возникает два вида адаптации - адаптация нервной системы и адаптация мышечной системы.

Адаптация нервной системы

Есть три способа адаптации нервной системы к силовым тренировкам: двигательное обучение, синхронизация двигательных единиц и растормаживание

  • Двигательное обучение. Первая адаптация НС, двигательное обучение, должно быть знакомым после прочтения главы 4. Во время первоначальной работы над новым упражнением (скажем, разнохватовые подтягивания на зацепках или кампус-тренировки) больше всего вас будет ограничивать недостаток координации и необходимых для выполнения этого упражнения ощущений. Первых несколько недель у вас должен быть быстрый прогресс в результате двигательного обучения и улучшения координации основных задействованных мышц, стабилизаторов и антогонистов. После этого дальнейший прирост силы будет определяться другими адаптационными процессами.
  • Синхронизация двигательных единиц - второй тип адаптации НС, увеличивающий силу. Допустим, вы уже наработали необходимую координацию и двигательные навыки для выполнения определенного упражнения - или вы добавили новое упражнение, которое не требует обучения (например, висы на зацепках). Первоначальные тренировки включают двигательные единицы в случайном, асинхронном порядке. Последующие тренировки усиливают синхронизацию двигательных единиц, так что постепенно двигательные единицы начинают работать в унисон, что, в итоге, и есть сила и мощность.
  • Растормаживавние - последний тип адаптации НС, наиболее важный для скалолазов выше среднего уровня, которые хотят достичь максимальной силы и мощности. Нервно-мышечная система имеет встроенные механизмы обратной связи, который направлен на обеспечение безопасности при применении большей силы. Связочный аппарат Гольджи, который находится в мышцах, чувствительный к степени напряжения, и в ситуациях применения большого уровня силы, он посылают тормозящие сигналы, которые препятствуют дальнейшему включению двигательных единиц. Для многих этот защитный механизм ограничивает применение силы ниже генетического потенциала. Это как ограничитель скорости в машине на 200 км/ч, когда она может ехать 300 км/ч. К счастью, регулярные высокоинтенсивные тренировки снижает чувствительность аппарата Гольджи и так открывает новый уровень максимальной силы.

Разница между максимально прикладываемой силой и абсолютными силовыми способностями называется дефицитом силы. Исследования показали, что значительный прирост силы возможен, благодаря тренировкам, угнетающим торможение. В одном из исследований (Tidow 1990) показано, что у нетренированных индивидов дефицит силы может составлять до 45%, так нервное торможение снижает абсолютную силу почти в два раза от потенциала. В исследовании также показано, что целевые тренировки элитных спортсменов уменьшает дефицит силы до всего 5%. Таким образом, значительный прирост силы возможен даже без наращивания больших тяжелых мышц!

В качестве финального аккорда, лучший тип тренировок для подавления торможения зависит от степени дефицита силы. Скалолазы среднего уровня, у которых, скорей всего, большая степень дефицита силы, больше всего получат пользы от тренировки с большими весами (отжимания с утяжелением, висы с утяжелением и гипергравитационный тренинг Хортса и пр). Скалолазная элита с небольшим дефицитом силы могут продолжать прогресс только благодаря комбинации высоко-интенсивных (гипергравитационных) и высокоскоростных (реактивных/плиометрических) тренировок.

Адаптация мышечной системы

Долгосрочный прирост мышечной силы строится на увеличении размера отдельных мышечных волокон (см. рис. 5.2). Этот процесс наращивания мышц известен как гипертрофия. Так как есть тесная взаимосвязь между размером и силой мышц, ваша способность становиться сильней в долгосрочном периоде в некоторой степени зависит от гипертрофии.

График исследования “Neural adaptation to resistance training” (Med Sci Sports Exerc. 1988)

Конечно, крупные мышцы в неправильных местах (на ногах, груди или плечах) - лишняя нагрузка для скалолазов. Даже свехразвитие всех важных мышц-сгибателей может быть не таким уж хорошим, если оно было достигнуто в результате не специфичных упражнений (таких как упражнения с тяжелыми свободными весами или круговые тренировки). Например, бицепсы размером с баскетбольный мяч, которые появились в результате тяжелых силовых нагрузок, будут не только нерабочими на скалах, но также будут препятствовать эффективному лазанию.

Все же, любая гипертрофия мышц предплечий, рук и спины, возникшая в результате специфических тренировок, будет полезна. Фактически, опытные скалолазы, которые тренировались много лет и у которых небольшая гипертрофия, вероятно, вряд ли тренировались эффективно правильно ели. Так как, чаще всего гипертрофия возникает в ответ на высокоинтенсивные тренировки с большой нагрузкой, вам захочется тренироваться в таком режиме, чтобы усилить эту адаптацию.

Интересно отметить, что хорошо тренированная нервно-мышечная система не обязательна для того, чтобы быть сильным скалолазом. Как упоминалось в первой главе, у небольшого количества индивидов места прикрепления связок находятся дальше от суставов и создают больший рычаг силы, чем у большинства людей с обычной генетикой. Эти немногие могут испытать на себе дар быть сильным. Другие генетические факторы, такие как сухощавое телосложение или высокий процент БС мышечных волокон, могут ещё больше усилить их физическую одаренность. Помня это, вы сможете понять, почему эти редко встречающиеся скалолазы невероятно сильны, независимо от того, как они тренируются, если они вообще тренируются. Следовательно, будет ошибкой копировать их тренировочные методики.

Энергетические системы

В скалолазании производство энергии в критичных мышцах-сгибателях обычно происходит из АТФ-КрФ системы и лактатной системы. Лактатная система может работать как при наличии кислорода (аэробно), так и без него (анаэробно).

АТФ-КрФ система

АТФ-КрФ система обеспечивает быструю энергию для скоростных интенсивных движений, какие встречаются на тяжелых боулдерингах или ключах маршрутов. В тренировках АТФ-КрФ система - основной источник топлива для быстрых интенсивных упражнений, длящихся меньше 15 секунд, например, хождение по кампусу или подтягивание на одной руке. АТФ-КрФ - высокоэнергетичные фосфаты, представленные в небольшом количестве во всех мышечных клетках. Интенсивные упражнения истощают их запасы за секунды.

Лактатная система

Постоянные, средне- или высокоинтенсивные упражнения, длящиеся от 10 секунд до 3 минут задействуют лактатную систему энергообеспечения. Это основная энергетическая система, обеспечивающая вас топливом во время лазания длинного боулдеринга или ключевого участка маршрута на выносливость. Углеводы, в данном случае представленные в виде глюкогена, являются источником питания лактатной системы, которая может работать с кислородом или без него.

Анаэробно: Высокоинтенсивные упражнения заставляют мышцы производить энергию при отсутствии кислорода (анаэробно) с накоплением молочной кислоты. В результате накопления молочной кислоты наступает усталость, боль в мышцах, и в конце концов, отказ мышц. Такое ограничение в анаэробном производстве энергии позволяет понять, почему непрерывное лазание сложных участков ограничивается по длительности, максимум, тремя минутами (при отсутствии какого бы то ни было отдыха). Следовательно, стратегия максимально быстрого лазания от одного места отдыха до другого будет лучшей на тяжелых маршрутах.

Анаэробный порог определяется как уровень рабочего потребления кислорода, при которой производство молочной кислоты в работающих мышцах превосходит способность организма выводить лактат. Как только вы превышаете анаэробный порог, молочная кислота начинает накапливаться, и вскоре последует мышечный отказ (см. рис. 5.3). В зависимости от условий, можно пересечь анаэробный порог при интенсивности упражнений от 50 до 80% от максимальной нагрузки. Отдышка (кислородный долг) и жжение в мышцах - два признака того, что вы пересекли анаэробный порог.

Понимание этого подчеркивает важность интервального подхода при высокоинтенсивном лазании. При лазании сложного маршрута, вы захотите не пересекать анаэробный порог как можно дольше. Как только вы это сделали, лезьте как можно быстрей к месту, где можно будет отдохнуть. Только там вы сможете успокоиться, опуститься ниже анаэробного порога и позволить организму снизить концентрацию лактата в крови. В зависимости от количества молочной кислоты в вашем организме, потребуется 12 минут или больше, чтобы вернуться к исходному уровню молочной кислоты (Watts 1996).

Аэробно: Мышечные действия, которые длятся дольше 3 минут, требуют использования кислорода для производства энергии. После исчерпания резервов АТФ-КрФ и при высоком уровне лактата в мышцах и крови (от анаэробного производства энергии), упражнение можно продолжать только при снижении его интенсивности (см. рис. 5.4). Анаэробное производство энергии ограничено возможностью печени выводить молочную кислоту из крови и преобразовывать ее обратно в глюкозу. Таким образом, аэробное производство энергии длится дольше и обеспечивает большую часть мышечных движений, задействуя углеводы, жиры(если упражнение длится достаточно долго) и белки в присутствии кислорода. Так как при аэробном производстве энергии молочная кислота не образуется, низкоинтенсивные движения могут длиться несколько часов без остановки (поход по горам или лазание по простому рельефу).

Тренировочные принципы

Понимание основных тренировочных принципов позволит вам направить большую часть времени на тренировки. Без слишком глубокого погружения в науку спорта, я попробую объяснить важные принципы специфичности, индивидуализации, постепенно роста нагрузки, вариативности, отдыха и детренированности.

Специфичность

Принцип специфичности тренировок, возможно, самый важный из всех. Он гласит, что чем более специфичными будут тренировки для определенного вида спорта (в скорости движений, положений тела, перечне движений, типе сокращений мышц), тем они будут более полезными для улучшения результата в этом виде спорта. Таким образом, упражнения, эффективные для наработки скалолазной силы (сила хвата, удержание блоков, динамическая сила прыжков) должны быть очень схожи непосредственно с лазанием. Чем более специфичными будут тренировки или упражнения, тем больше будет польза для скалолазания. Давайте рассмотрим несколько примеров того, как это применяется на практике в скалолазании.

Кроссфит или железо не тренирует мышцы так же, как это делает скалолазание. Следовательно, посещение тренажерного зала, скорей всего, будет пустой тратой времени для скалолазов, кроме тех, у кого очень плохая форма. Некоторые скалолазы-любители могут поспорить со мной, так как они заметили улучшения на скалах, когда практиковали тренировки с дополнительным весом. Так как развитие техники и стратегии обеспечивает большую часть прогресса во время первых нескольких лет занятий скалолазанием, эти ребята будут замечать улучшения, независимо от того, какими тренировками они занимаются. Вероятно, они смогут ощутить такой же прогресс, с дополнительными тренировками в виде катания на коньках или игры в покер.

Резиновые эспандеры для кисти (или другие подобные устройства) - ещё один пример непродуктивного улучшения силы пальцев. Сила хвата служит одним из лучших примеров специфичности, так как она сильно зависит от типа хвата (закрытый, открытый, полуоткрытый), положения запястий и локтей, интенсивности напряжения и даже типа напряжения (изометрическое, концентрическое). Более того, сила хвата почти исчезает, когда вы висите с почти максимальной нагрузкой, и именно так её и нужно тренировать. Следование, эспандер будет почти бесполезным в скалолазании, хотя он и может представлять некоторую ценность в качестве разминки или средства реабилитации после травмы.

Что на счет обычных подтягиваний - самого популярного упражнения среди скалолазов? Очевидно, это движение похоже на лазание, но положение, степень напряжения тела и, особенно, положение кистей и рук не варьируются, как на скалах. Более того, способность остановить или зафиксировать руки в каком-либо новом положении более необходима в скалолазании, чем само подтягивание. Таким образом, чтобы обеспечить наибольший перенос подтягиваний на лазание, необходимо разнообразить подтягивания во время каждого подхода. Например, вы можете изменять расстояние между руками, располагать руки на разных уровнях (используя петлю), добавлять блоки или остановки во время подтягивания в разных положениях рук. Такой подход будет намного более адекватным, чем просто подтягиваться в одном и том же положении.

И наконец, давайте рассмотрим концепцию кроссфита, который тоже пытаются применять в качестве тренировки в скалолазании. Очевидно, что идея улучшить результаты в скалолазании благодаря занятиям другими видами спорта слепо противоречит принципу специфичности. Фактически, кроссфит тренировки кажутся полезными только для видов спорта, требующих аэробной выносливости, таких как триатлон.

Индивидуализация

Ни один скалолаз на планете не похож на вас, так что наиболее эффективная тренировочная программа для вас будет отличаться от тренировок любого другого скалолаза. Должно быть, это звучит банально, но многие скалолазы копируют тренировочные программы своих приятелей или, что еще хуже, имитируют тренировки элитных скалолазов. Я считаю это довольно глупым подходом к тренировкам. Наиболее разумная тренировочная программа (для вас) будет принимать во внимание ваши сильные и слабые стороны, предыдущие травмы, так же как и цели и количество времени, которое у вас есть, для работы над ними. Более того, так как вы можете быстрей или медленней восстанавливаться после тренировок, чем другие, ваше оптимальное количество отдыха может диктовать разную частоту тренировок. Следовательно, будет разумным разработать и выполнять ту программу, которая окажется лучшей для вас, и игнорировать остальные.

Постепенный рост нагрузок

Постепенность, в качестве тренировочного принципа, гласит, что для увеличения физических возможностей необходимо подвергать тело уровню нагрузки больше привычного. Вы может достигнуть такой перегрузки увеличивая интенсивность, объем или скорость тренировок, или уменьшая периоды отдыха между успешными подходами. В зависимости от упражнений и того, какие параметры упражнения вы хотите варьировать, перегрузка приведет к адаптации за счет развития большей силы, мощности, анаэробной или аэробной выносливости. Например, увеличивая интенсивность упражнений и скорость, вы получите увеличение максимальной силы и мощности, в то время как уменьшение интервалов отдыха и увеличение объема приведет к росту анаэробной выносливости мышц.

И хотя менять иногда метод нагрузки - хорошая идея, лучший способ дополнительной нагрузки для вас зависит от ваших текущих результатов в скалолазании. Если вы больше всего любите боулдеринг, вы будете отдавать предпочтение тренировкам силы и мощности (и создавать дополнительную нагрузку за счет увеличения интенсивности и скорости выполнения упражнений). Если вы тренируетесь для лазания с веревкой, то лучше всего будет увеличивать объем тренировок и сокращать интервалы отдыха для повышения выносливости. И наконец, любители мультипитчей и больших стен, которым еще больше нужна выносливость, должны увеличивать нагрузку за счет увеличения общего количества упражнений.

Вариативность

Одна из главных тренировочных ошибок почти всех спортсменов - отсутствие постоянного изменения тренировочных программ. Согласно этому принципу, тело привыкает к постоянно повторяющимся тренировочным нагрузкам. Таким образом, если вы идете на скалодром, и каждый раз выполняете одни и те же упражнения, ваша сила и способность лазить скоро испытает плато, несмотря на то, что вам это кажется хорошей тренировкой. Стремитесь разнообразить тренировки за счет типа нагрузки (больше всего), так же как меняя типы и порядок лазания и выполняемых упражнений.

Адаптация мышц к физической нагрузке

Периодизация - это еще одна форма вариации, которая включает изменение общей интенсивности и объема нагрузки на разных занятиях. Например, во время тренировок в зале, вы можете менять тренировочный объем от “большого объема” (лазание большого количества маршрутов средней сложности), “большой интенсивности” (тяжелые силовые боулдеринги) и “большого объема и интенсивности” (лазание как можно большего количества тяжелых маршрутов). Вы также можете менять свои тренировки каждые несколько недель, как в тренировочном цикле 4-3-2-1, описанном в седьмой главе. Итог: сделайте принцип вариативности отправной точкой вашей тренировочной программы для скалолазания и вы получите неожиданно хороший результат!

Отдых

Мышечная адаптация, которую мы обсуждали раньше, происходит между, а не во время тренировок. Эффективный отдых и здоровый образ жизни (включая соответствующее питание и достаточное количества сна) - фундамент для максимального роста силы в результате тренировочных стимулов. По приблизительной оценке, полное восстановление (суперкомпенсация) требует от 24 до 72 часов, в зависимости от объема и интенсивности тренировки (см. рис. 5.5). Например, может потребоваться всего один день для восстановления после большого объема низко-интенсивных упражнений, как лазание очень простых маршрутов или просто прогулка по горам, в то время, как понадобится 2-3 дня для полного восстановления после большого объема высоко-интенсивных упражнений, таких как пролаз нескольких маршрутов почти предельной для вас категории или выполнения тренировки на кампусе и гипергравитационной тренировки в одном занятии.

Фазы суперкомпесации

Нельзя переоценить важность этого принципа, так как слишком частые тренировки (или слишком маленькое количество отдыха) естественным образом приведет к снижению результатов и/или травмам (см. рис. 5.6). Это известно как синдром перетренерованности, и он удивительно часто встречается среди сильных скалолазов. Понаблюдайте, как много скалолазов постоянно жалуются на непрестанные травмы или, что они “не становятся сильней”, несмотря на их приверженность тяжелым тренировкам. Теперь вы знаете почему: перетренированность.

Принцип планирования тренировок

Еще один фактор, который приводит к перетренированности или непривычно долгому периоду восстановления - применение слишком большого количества тренировочных стимулов к нервно-мышечной системе. Как показано в цикле суперкомпенсации (рис. 5.5), тренировочные стимулы приводят к нервно-мышечной усталости и временному снижению функциональных способностей. При соответствующем отдыхе, система восстановится до уровня выше прежнего. Интересно, что продолжение работы до определённой точки приводит к улучшению последующей адаптации, а дальнейшие усилия приводят к мышечному отказу, после которого потребуется длительное восстановление. Эту важную концепцию необходимо помнить при высоко-интенсивных тренировках. 12 подходов на кампусе, вероятно, обеспечит не больше стимулов для адаптации, чем 6, но выполнении 12 подходов загонит вас в глубокую яму, из которой вы будете долго выбираться. Те же самые аргументы можно привести против выполнения 20 подходов подтягиваний или 60 минут гипергравитационной тренировки на фингерборде. Итог: при высокоинтенсивной тренировке меньше, часто значит больше.

Детренированность

При прекращении силовых тренировок (или постоянного лазания), недавние наработки в силе начинают потихоньку теряться всего за 10-14 дней. Более значительные потери в силе возникнут в последующие недели, если тренировки или лазание не возобновятся. Хотя небольшой перерыв хорошо делать каждый год (психологически и в случае хронических травм), постоянные перерывы в тренировках делают очень сложным долгосрочный набор силы.

Если вам часто приходится путешествовать с связи с работой или по другим причинам прерывать тренировки на 1-2 недели, вы можете приостановить развитие синдрома детренированности, благодаря знанию об удлинении периода суперкомпенсации после высокоинтенсивных тренировок. Так как мы уже узнали, что для восстановления после длительной высокоинтенсивной тренировки может понадобиться несколько дней, выполнение такой тренировки перед перерывом отодвинет начало наступления детренированности на несколько дней. Таким образом, вы можете вернуться к тренировкам в пике формы даже после 10 дней отсутствия. Длинный период суперкомпенсации после предельно тяжелых тренировок также объясняет, почему многие энтузиасты скалолазания, которые, сами того не зная, испытывают перетренированность, выходят на новый уровень после недельного перерыва в лазании и тренировках.

Советы по эффективным физическим тренировкам
  1. Специфичность. Чтобы упражнения могли обеспечить полезный тренировочный эффект в скалолазании, они должны быть очень похожи на те действия, которые вы делаете во время лазания, включая скорость и характер движений, положение тела и тип сокращения мышц.
  2. Индивидуализация. Нет еще одного точно такого же скалолаза, ваша оптимальная тренировочная программа будет отличаться от любой другой программы!
  3. Сверхнагрузки. Для увеличения физических возможностей организма, необходимо подвергать тело нагрузкам больше привычных. Этого можно достичь, увеличив интенсивность тренировок, скорость, объем, или уменьшив периоды отдыха между подходами лазания.
  4. Вариативность. Так как тело адаптируется к тренировочным стимулам, необходимо регулярно варьировать тренировочные упражнение каждые несколько дней или недель.
  5. Отдых. Нервно-мышечная адаптация происходит во время отдыха и сна, а не во время тренировок. Так что, достаточное количество отдыха и здоровые привычки - необходимое условие для извлечения максимума из ваших инвестиций в тренировки.
  6. Детренрированность. Пропуск тренировок или постоянные перерывы в тренировочном цикле сделают маловероятным прирост силы и могут привести к падению скалолазной формы.

Тренировочные методы

Ниже детализированные основные концепции и методы силовых тренировок в скалолазании. Так как мышцы-сгибатели часто оказываются главным физическим лимитирующим фактором в скалолазании, примеры того, как применить эту информацию в скалолазании поможет сфокусироваться на тренировке этих частей тела.

Мышечная адаптация - неотъемлемая часть тренировочного процесса. Абсолютно каждый почитатель бодибилдинга в свое время сталкивается с таким понятием как мышечная адаптация. Любая мышца, ощущая одну и ту же самую нагрузку, по прошествии времени попросту привыкает к ней.

Утверждать, что данное явление сказывается только негативно, нельзя. Скажем, в таких видах спорта, как бокс, каратэ либо иной другой контактный вид спорта, а так же прыжки и тому подобное в мышечной адаптации видят положительные изменения.

Множественные удары, а так же броски отрабатываются до автоматизма, что во многом помогает победить на соревнованиях. А такое привыкание является одним из проявлений мышечной адаптации.

Не рассматривается она в негативном ключе и в пауэрлифтинге. В бодибилдинге трактовка термина «мышечная адаптация» уже сводится к привыканию мышцы к определенному виду нагрузки. Плохо это потому, что по прошествии времени результативность упражнений начинает понижаться, и достигнутые темпы роста мышечной ткани начинают показывать отрицательную динамику.

Спортсмены, в подавляющем большинстве случаев, стараются менять каждые несколько месяцев. Однако новичкам данная спешка вовсе ни к чему. Нетренированный организм значительно хуже привыкает к нагрузке и по этой причине одно и то же упражнение, выполняемое систематично, может давать желанный результат даже через полгода.

Как же сделать чтобы не мешала мышечная адаптация

В настоящее время существует несколько эффективных способов. Первый способ является профилактическим, он едва ли поможет спортсмену, который уже давно сидит в зоне адаптации. Состоит он в систематичном изменении весов снарядов. Все просто, в случае если спортсмен продолжительное время занимается с одинаковым весом, либо меняет его совсем чуть чуть (типичным примером является прокачка груди по схеме 4Х12), то мышцы быстро привыкают к данному уровню нагрузки и попросту перестают на нее реагировать.

Вывести атлета из зоны адаптации, просто поменяв вес невозможно, а продлить время результативной тренировки до 12-15 недель, каждый раз меняя вес вполне реально.

Мышцы атлета привыкают не просто к конкретному весу, но и к числу повторов/подходов, вполне логично предположить, что меняя число каждую тренировку можно на продолжительное время забыть о мышечной адаптации. Учитывая то, что изменение числа повторов/подходов обязательно сопровождается изменением веса, общая длительность получения результата от тренировки доходит примерно до полугода. К сожалению, мышцы адаптируются и под определенное движение. Именно эта адаптация является наиболее опасной в бодибилдинге по той простой причине, что раз привыкнув, мышцы уже никогда не смогут забыть данное движение. А учитывая то, что преобладающее большинство спортсменов применяет ограниченный набор упражнений, то с мышечной адаптацией столкнутся все. Более того, спортсмен не способен значительно изменить движение, так как он меняет вес либо же число повторов.

Человеческий организм - это удивительная адаптационная структура. Нашему мозгу необходимо примерно три недели, чтобы стало привычкой то или иное, повторяющееся изо дня в день действие. Мышцам достаточно в буквальном смысле пары тренировок, чтобы они начали подстраиваться под новый режим работы.

Самый яркий пример быстроты адаптации, это когда вы начали выполнять какое-то новое упражнение или пришли в зал после перерыв, и на следующее утро не можете пошевелить ни ногой, ни рукой. Однако вот проходит 2-3 тренировки и болевые ощущения проходят.

Иными словами первые 2-3 недели - самые стрессовые для мышц и происходит их наиболее активное изменение. Затем (с 5 по 8 неделю) идет фаза уменьшения отдачи от тренировки. И в итоге на 9-12 неделях, мышца перестает хорошо реагировать на программу тренировок и ей необходимо дать нагрузку отличную от обычной. То есть происходит адаптация.

Разумеется, у новичков (стаж тренировок до 1 года) цифры будут больше, т. к. адаптация мышц к нагрузке протекает медленнее (слабо развита связь мозг - мышцы) и адаптация растягивается на более длительный срок. Иными словами, программу тренировок новичкам можно менять позже на 5-10 недель.

Атлеты с большим опытом, которые чувствуют свое тело, если им знакомы специальные приёмы тренировок - пампинг, суперсеты, должны смотреть в сторону уменьшения времени до смены тренировочной программы. Например, можно говорить о цифрах порядка 4-6 недель в рамках работы с одной программой тренировки.

Таким образом, примерное время (когда тело/мышцы все еще получают хороший стимул для роста) тренинга на одной программе тренировок:

Новички - 10-16 недель, 2, 5-4, 5 месяца;.
Более опытные - 8-11 недель, 2-3 месяца;.
Продвинутый уровень - 4-6 недель, 1-1, 5 месяца.

Иногда, думая о смене программы тренировки многие принимают во внимание только силовую ее часть. И аэробная активность остается без изменений. Однако также необходимо менять и ее, ибо тело достаточно быстро адаптируется к сердечно-сосудистой деятельности, замедляется жиросжигание.

В итоге, человеческий организм привыкает к постоянным процедурам на беговой дорожке и перешагнув определенный временной рубеж (в среднем 1-2 месяца) начинает сжигать меньшее количество калорий, чем в начале.

Идеальным решением, способным максимально ускорить процессы жиросжигания, является оперативная смена видов аэробной активности, в частности такая:

Неделя с 1 по 3 - плавание;
Неделя с 4 по 7 - прыжки на скакалке;
Неделя с 8 по 11 - спринт или ходьба.

Почему не нужно часто менять программу тренировок.

Научная точка зрения.
Многие говорят, что программу тренировок нужно часто менять, чтобы удивлять мышцы. Это неправильно, физиологически невозможно шокировать мускулы ввиду их пассивности.

Помимо этогИными словами к каждому упражнению организм приспосабливается в разное время, по-своему. Этот период может занимать от нескольких недель до нескольких месяцев в зависимости от квалификации атлета и сложности упражнения. Чтобы было понятней о чем идет речь, сравните два упражнения по степени их освоения - становая тяга и подъем штанги на бицепс. Второе осваивается быстро, первое намного дольше и сложнее.

Всем известно, что мышечные - это не бездумные нити, это комплекс постоянно обучающихся и приспосабливающихся к нагрузке сократительных волокон. Для того, чтобы они росли, человеку необходимо бросить им вызов. Сама идея перегрузки мышц становится таким образом одним из важнейших принципов силовых тренировок.

И когда вы начинаете поднимать новые веса или выполнять новые упражнения, создается временной интервал, когда мышцы еще не адаптировались к новой нагрузке и новой задаче. То есть когда тело атлета и его мускулы, активно отзываются на смену нагрузки и всячески стремятся к росту и изменению своих первоначальных характеристик (будь то сила, время нахождения под нагрузкой и прочее.

Когда этот период проходит, мышцы необходимо снова удивлять и шокировать, иначе можно попасть на тренировочное плато. При этом удивлять нужно не обязательно более тяжелыми весами, но и сменой количественных параметров: время отдыха, подходы, повторения. А также использованием разных принципов Джо вейдера: суперсеты, пирамида.

Интенсивность и длительность мышечной работы в значительной степени определяются функциональными возможностями мышц, вы­полняющих эту работу.

Варианты мышечного ответа на наг­рузку обусловлены прежде всего тем, что мышца как целое состо­ит из отдельных дви­гательных единиц, обладающих различными физиологическими характеристиками, различиями в метаболизме и структуре .

Медленные волокна (типа I) обладают очень высокой активностью окислительных ферментов и большим числом митохондрий, т. е. являются волокнами оксидативного типа энер­гетики. Но они имеют низкую активность АТФазы миозина и низкую активность гликолитических ферментов.

Быстрые волокна типа IIа обладают высокой активностью АТФазы и гликолитичес­ких ферментов, но активность окислительных ферментов у них ни­же и количество митохондрий меньше, чем у волокон I типа; их называют волокнами «гликолитического» типа энергетики.

Быстрые волокна типа IIб имеют активность АТФазы, меньшую, чем у типа IIа, но более высокую, чем у типа I волокон; они обладают высо­кой активностью гликолитическнх ферментов и высокой активно­стью окислительных ферментов, т. е. имеют оксидативно-гликолитический характер энергетического обмена.

У быстрых волокон вы­сокие АТФазная активность миозина и скорость сокращения сочетаются с большим объемом саркоплазматического ретикулума (СПР) и более высокой интенсивностью транспорта Са+, чем у медленных.

Окислительный потенциал волокон тесным образом связан с васкуляризацией и содержанием в них миоглобина . Медленные волокна обладают более высоким содержанием мио­глобина и более развитым капиллярным руслом .

Функциональные и биохимические свойства мышцы находятся в прямой зависимости от природы иннервации, т. е. от параметров иннервирующих мотонейронов.

Функциональное значение дифференциации мы­шечных волокон заключается прежде всего в приспособленности к слабым и длительным («позным») или кратким и сильным («фазическим») напряжениям. Связь свойств моторных единиц с пара­метрами мотонейронов, и в частности с порогами их возбудимости, обеспечивает автоматический «выбор» соответствующих активируе­мых моторных единиц под влиянием сигнала при качественно раз­ных видах нагрузки. Вместе с тем зависимость структуры и функции мышцы от характера иннервации и возмож­ность их перестройки в соответствии с изменением параметров приходящих по нерву рабочих стимулов, составляет важную осно­ву для приспособления двигательного аппарата в процессе трени­ровки к разным видам мышечной нагрузки.

Структурные функциональные и биохимические свойства мышцы находятся в прямой зависимости от характера иннервации, что составляет важную осно­ву для приспособления двигательного аппарата в процессе трени­ровки к разным видам мышечной нагрузки.

Срочная адаптация. Факторы, определяющие функцию скелетных мышц при нагрузке

Три основных фактора определяют интенсивность и длительность мышечной работы на уровне ске­летных мышц: 1) число и тип активируемых ДЕ, 2) уровень биохимических процессов, обеспечивающих образование энергии в мышечных клетках, 3) уровень кровоснабжения мышцы.

Развиваемая мышцей при нагрузке сила зависит от числа акти­вированных ДЕ и частоты их сокращения . При нара­стании нагрузки, вначале решающим момен­том для увеличения силы является рост числа мобилизованных ДЕ; затем - увеличение частоты импульсации мотонейронов. При этом максимальное число активируемых ДЕ и частота их импульсации зависят от состояния регуляторных мотор­ных центров и степени торможения отдельных мотонейронов, ко­торая определяется супраспинальной и проприоцептивной актив­ностью. Важная роль ЦНС в адаптации мышц к нагрузке определяется еще и тем, что при си­ловых напряжениях в сокращение могут включаться, помимо от­ветственных за «полезную» силу мышц-агонистов, мышцы-антаго­нисты, что может как увеличивать, так и снижать развиваемую силу. Степень или отсутствие этого явления зависит от совершен­ства межмышечной координации, реализующейся также на уровне ЦНС.

У нетренированного человека при адаптации к силовым напря­жениям максимальное число вовлеченных в сокращение ДЕ составляет всего 30-50% от имеющихся и развиваемая сила мала, в то время как у тренированного надлежащим образом человека число мобилизованных ДЕ при силовых на­пряжениях возрастает до 80- 90% и более, а сила по сравнению с нетренированным больше в 2-4 раза. Это опре­деляется развитием адаптационных изменений на уровне ЦНС, приводящих к повышению способности моторных центров мобили­зовать большее число ДЕ и к совершенствованию меж­мышечной координации.

В мышцах, где преобладают мед­ленные ДЕ, сила может поддерживаться дольше, чем в мышцах с преобладанием быстрых единиц. При работе со значительным силовым напряжением выносливость невелика из-за утомления быстрых ДЕ мышечная дея­тельность не может продолжаться более 10- 30 с.

Мышечная работа связана со значительным увеличением расхо­да энергии в мышцах.

Центральное место в механизме энергообеспечения мышечных клеток занимает переход АТФ - АДФ. В анаэробных условиях АДФ рефосфорилируется в АТФ с помощью КФ или в процессе гликогенолиза и гликолиза с образованием лактата. В аэробных условиях АДФ рефосфорилируется в АТФ при использовании в качестве «горючего» главным образом гликогена, глюкозы или свободных жирных кислот. Окисление белков для энергообеспечения в норме возрастает при изнуряющих тяжелых нarpyзкax.

При нагрузке в скелетных мышцах очень быстро происходит снижение содержания АТФ и КФ, возрастает ресинтез АТФ и потребление О 2 , активируется гликогенолиз и гликолиз, что сопровождается снижением содержания в мышце гликогена и ростом содержания пирувата и лактата, наблюдает­ся увеличение концентрации глю­козы и глюкозо-6-фосфата. Важной чертой энергеобмена мышц при нагрузке в нетренированном организме является от­носительное преобладание интенсивности гликогенолиза и гликолиза над интенсивностью аэробных процессов.

Ограничение работоспособности скелетных мышц и развитие утомления связаны с падением содержания АТФ, КФ и гликогена в мышцах и накоплением в них лактата. Чем выше способность митохондрий утилизировать пируват, тем меньше пи­рувата перейдет в лактат и тем меньше лактата накопится в мышцах и крови. Т.о., мощность системы мнтохондрий скелетной мышцы является звеном, лимитирующим интенсивность и длительность работы мышцы.

Предполагается, что лактат и снижение рН способствуют увеличению свободного окисления, теплопродукции и тем са­мым снижению эффективности использования О 2 и субст­ратов в мышцах. То есть, лак­тат угнетающее действует на функцию митохондрий, вследствие ацидоза и перехода Са 2+ в митохондрии, накоплению его в митохондриях и разобщению окисления с фосфорилированием.

Другой механизм лимитирующего работоспособность мышц действия лактата связывают с влиянием ацидоза на процесс сокращения: избыток ионов водорода уменьшает образование комп­лексов Са 2+ -тропонин и тем самым препятствует формированию достаточного количества актомиозиновых «мостиков», определяю­щих силу сокращения.

В последнее время к факторам, ограничивающим работоспособность мышц при интенсивной работе, относят накопление в мышцах и крови аммиака. Аммиак угнетающе дейст­вует как на саму мышцу, так и на ЦНС.

Фактором, который может лимитировать работоспособность мышц, является АТФазная активность миозина, реализующая утилизацию энергии сократительным механизмом. В резуль­тате тренировки повышение выносливости работающих мышц соп­ровождается повышением активности АТФазы миозина в этих мыщцах.

Адекватное кровоснабжение работающих мышц - один из важнейших факторов, определяющих работоспособность мышечных во­локон . При мышечной ра­боте, как известно, увеличиваются потребности мышцы в О 2 , притоке субстратов, выведении С0 2 и других метаболитов, нор­мализации температуры, гидратации и т.д. В связи с этим объем­ный кровоток в скелетных мышцах при физической нагрузке мо­жет возрастать в 10-20 раз и составлять до 80% минутного объе­ма кровообращения при 15% в покое.

При сильных и максимальных сок­ращениях в мышцах достигается давление, заведомо превышающее артериальное, и кровоток в них прекращается. При беге с интенсивностью 3-5 м/с икроножная мышца человека снабжается кровью только в течение 55% времени, зани­мающего все движение.

Кровоснабжение мышц при нагрузке обеспечивается за счет трех основных факторов: 1) перераспределения кровотока между работающими и неработаю­щими органами; 2) увеличения объемного кровотока в мышцах во время сокращения; 3) увеличения кровотока сразу после сокращения.

Кровоток в работающих мышцах зависит от интенсивности работы. Пока развиваемое мышцей напряжение составляет от 5 до 10% максимального произвольного сокращения, объемный кровоток в мышце возрастает пропорционально силе сокращения во время нагрузки и после завершения сокращений снижается до исходного уровня в течение 1 мин. При нагрузке, вызывающей сокращения величиной 10-20% от максимального уровня, кровоток в работающих мышцах во время сокращения возрастает довольно незначительно, но быстро увеличивается сразу после конца сокраще­ния; при напряжениях, превышающих 20-30% максимального уровня для одних мышц и 50-70%- для других, кровоток во время сокращения прекращается, но после завершения сокращения кровоток возрастает тем больше, чем выше было на­пряжение мышцы при сокращении.

Ограничение кровотока в работающих мышцах при интенсивных сокращениях способствует накоплению в мышцах лактата и развитию утомления. При произвольных сокращениях с силой выше 20% от максимальной накопление лактата растет линейно с ростом силы. Максимальных значений накопление лакгата достигает при усилиях, равных 30-60% от максимального уровня.

Мышечную работу можно осуществлять довольно долго, если развиваемое мышцами напряжение не будет превосходить уровень 10-20% от максимального.

Возможность адекватного увеличения кровотока при нагрузке в значительной мере определяется плотностью капилляров на единицу объема мышцы. У нетренированного человека в мышце бедра плотность капилляров составляет 325 на 1 мм 2 , а у высокотренированных спортсменов-бегунов - около 500 на 1 мм 2 . В «медленных» волокнах по сравнению с «быстрыми» волокнами наблюдается более высокая плотность капилляров. Кровоснабжения мышцы - одно из звеньев, лимитирующих физическую работо­способность.

Механизмы изменения функции скелетных мышц при долговременной адаптации.

Систематические спортивные тренировки увеличивают функциональ­ные возможности двигательного аппарата. Максимальное увеличе­ние силы отдельных мышечных групп мо­жет достигать 200-300%; при движениях, вовлекающих в сокращение многие мышечные группы - 80-120%. Тренировка повышает также выносливость. Если максимальная скорость бега при нагрузке увеличивается на 28%, то выносливость - более чем в 5 раз.

Увеличение силы, скорости и точности движений в результате тренировки в значительной степени определяется адаптационными изменениями ЦНС, то есть в структурах аппарата регуляции. В результате длительной силовой тренировки повышается спо­собность моторных центров мобилизовать до 90% и более ДЕ (при 20-35% до трениров­ки). Адаптация к предельным физическим нагрузкам связана с форми­рованием в КБП систем взаимосвязанной (син­хронной и синфазной) активности, являющихся частью функцио­нальной системы управления движениями и обладающих высокой помехоустойчивостью. При тренировке происходит растормаживание заторможенных ранее мотонейронов, что увеличивает число ДЕ, участвующих в мышечной ра­боте. Все это позволяет полагать, что при формировали адаптации к фи­зическим нагрузкам совершенствование управления скелетными мышцами реализуется на всех уровнях регуляции.

В основе функциональной перестройки аппарата управления в процессе адаптации лежит активация синтеза нуклеиновых кислот и белков в нейронах, приводящая к структурным изменениям, по­вышающим работоспособность этих клеток. Активация синтеза РНК и белка в нейронах приводит к гипертрофии этих клеток.

Повышение работоспособности скелетных мышц в процессе тренировки связано с увеличением синтеза нуклеиновых кислот и белков в этих структурах, их массы и мощности.

В процессе адаптации к силовым нагрузкам происходит увеличение массы мышечных волокон - рабочая гипертрофия мышцы . При адаптации к нагрузкам на выносливость гипертрофия мышц либо не возникает, либо развивается в малой степени.

В процессе длительной адаптации к физической нагрузке повышается мощность системы энергообеспечения скелетных мышц . При тренировке па выносливость в большей мере происходит увеличение числа митохондрий и активности митохондриальных ферментов на единицу массы мышцы. Увеличивается способность мышц утилизировать пируват и жирные кислоты.

При адаптации к силовым нагрузкам не наблюдается такого увеличения мощности системы мито­хондрий в мышцах. В процессе адаптации к кратковременным боль­шим силовым нагрузкам возрастает мощность системы анаэробного энергообразования, что выра­жается в увеличении содержания в мышцах гликогена в 1,5-3 ра­за и активности гликогенсинтетазы, в увеличении мощности системы гликогенолиза и гликолиза. Нагрузка на выносливость приводит к увеличению синтеза митохондриальных белков в значи­тельно большей мере, чем белков ферментов гликолиза п гликоге­нолиза, а силовая спринт-нагрузка, напротив, приводит к большому росту интенсивности синтеза белков ферментов системы гликолиза и гликогенолиза. Нагрузка на выносливость приводит к повышению синтеза белков митохондрий не только в медленных волокнах мышцы, но и в быстрых, а силовая нагрузка приводит к росту синтеза ферментов гликолиза не только в быстрых, но и в медленных волокнах. Именно это, по-видимому, объ­ясняет тот факт, что в процессе адаптации в зависимости от на­грузки может наблюдаться не только преобладание массы волокон одного типа над массой другого, но и перестройка энергетического метаболизма обоих типов волокон скелетных мышц, приближаю­щая их к миокардиальным.

Увеличение мощности систем энергообразования сочетается при адаптации с ростом активности АТФазы актомиозина мышечных волокон . Это означает, что энергообеспечение в скелетных мышцах при адаптации возрастает также и за счет повышения мощности системы утилизации энергии в сократительном аппарате. Кроме того, в процессе тренировки на­блюдается увеличение массы белков СПР и мощности системы транспорта Са 2+ в мышцах.

Увеличение мощности системы митохондрий в мышцах является решающим фактором, определяющим повышение выносливости тре­нированного организма. Повыше­ние мощности системы митохондрий увеличивает спо­собность окислительного ресинтеза АТФ, способствует увеличению, интенсивности утилизации пирувата, уменьшению перехода его в лактат и, следовательно, уменьшению накопления лактата в мышцах.

В тренированном организме увеличение мощности системы митохондрий в скелетных мышцах значительно превыша­ет рост МПК и увеличе­ние выносливости коррелирует именно с ростом числа митохондрий, но не с величиной МПК. В результате тренировки выносливость возрастает в 3-5 раз, количество митохондрий в скелетных мышцах-в 2 раза, а МПК-только на 10-14%.

Одним из факторов, повышающих выносливость тренированного организма, является уменьшение сте­пени образования в митохондриях повреждающих свободноради­кальных форм кислорода и активации ПОЛ при интенсивной рабо­те и в покое. Увеличение мощности системы митохондрий обеспечивает тренированному организму экономию расходования гликогена при нагрузках. В основе этого эффекта лежит увеличение способности утилизировать при энергообразовании липиды.

Повышение работоспособности скелетных мышц в результате адаптации к физической нагрузке может быть связано также с уменьшением в 2-3 раза накопления во время работы аммиака, одного из воз­можных факторов, вызывающих утомление.

А даптация к физической нагрузке приводит к изменениям кро­воснабжения скелетных мышц . Происходит более экономное перераспределение крови в организме при на­грузке, благодаря чему мышечная работа не приводит к резкому снижению кровотока во внутренних органах. Это явление обеспечивается, во-первых, за счет усовершенствования при тренированности центральных меха­низмов дифференцированной регуляции кровотока в покое и при нагрузке в работающих и неработающих мышцах, во-вторых, за счет увеличения васкуляризации мышечных волокон и повышения способности мышечной ткани утилизировать О 2 из притека­ющей крови . Последнее связано с увеличением содержания миоглобина и мощности системы митохондрий в тренированных мышцах.

У высокотренированных спортсменов-бегунов количество капилляров в четырехглавой мышце бедра достигает 500 мм 2 при 325 мм 2 у нетренированного человека, в результате каждое мышечное волокно оказывается ок­руженным 5-6 капиллярами. В тренированных мышцах людей, адаптированных к бегу, количество капилляров, приходящихся на мышечное волокно и на 1 мм 2 сечения мышцы, возрастает на 40% по сравнению с данными для нетренированных людей.

Увеличение плотности капилляров происходит главным образом при адаптации к нагрузкам на выносливость. При тренировке силового характера не наблюдается изменений количества капилляров, приходящихся на одно мышечное волокно. При этом плотность капилляров в мышцах даже уменьшается. Это обстоятельство существенно для понимания механизма сниже­ния выносливости у силовых спортсменов высокого класса.