Кто создал теорию строения органических соединений. Теория строения органических веществ


Органическая химия — раздел химии, в котором изучают соединения углерода, их строение, свойства, взаимопревращения.

Само название дисциплины — «органическая химия» — возникло достаточно давно. Причина его кроется в том, что большинство соединений углерода, с которыми сталкивались исследователи на начальном этапе становления химической науки, имели растительное или животное происхождение. Тем не менее, в порядке исключения, отдельные соединения углерода относят к неорганическим. Так, например, неорганическими веществами принято считать оксиды углерода, угольную кислоту, карбонаты, гидрокарбонаты, циановодород и некоторые другие.

В настоящее время известно чуть менее 30-ти миллионов разнообразных органических веществ и этот список непрерывно пополняется. Такое огромное число органических соединений связано, прежде всего, со следующими специфическими свойствами углерода:

1) атомы углерода могут соединяться друг с другом в цепи произвольной длины;

2) возможно не только последовательное (линейное) соединение атомов углерода между собой, но также разветвленное и даже циклическое;

3) возможны разные виды связей между атомами углерода, а именно одинарные, двойные и тройные. При этом валентность углерода в органических соединениях всегда равна четырем.

Помимо этого, большому разнообразию органических соединений способствует также и то, что атомы углерода способны образовывать связи и с атомами многих других химических элементов, например, водородом, кислородом, азотом, фосфором, серой, галогенами. При этом водород, кислород и азот встречаются наиболее часто.

Следует отметить, что довольно долго органическая химия представляла для ученых «темный лес». Какое-то время в науке даже была популярна теория витализма, согласно которой органические вещества не могут быть получены «искусственным» способом, т.е. вне живой материи. Однако теория витализма просуществовала не очень долго, ввиду того что одно за одним обнаруживались вещества, синтез которых возможен вне живых организмов.

У исследователей вызывало недоумение то, что многие органические вещества имеют одинаковый качественный и количественный состав, однако часто обладают совершенно непохожими друг на друга физическими и химическими свойствами. Так, например, диметиловый эфир и этиловый спирт имеют абсолютно одинаковый элементный состав, однако диметиловый эфир в обычных условиях представляет собой газ, а этиловый спирт – жидкость. Кроме того, диметиловый эфир с натрием не реагирует, а этиловый спирт взаимодействует с ним, выделяя газообразный водород.

Исследователями XIX века было выдвинуто множество предположений касательно того, как все-таки устроены органические вещества. Существенно важные предположения были выдвинуты немецким ученым Ф.А.Кекуле, который первый высказал идею о том, что атомы разных химических элементов имеют конкретные значения валентностей, а атомы углерода в органических соединениях четырехвалентны и способны объединяться друг с другом, образуя цепи. Позднее, отталкиваясь от предположений Кекуле, российский ученый Александр Михайлович Бутлеров разработал теорию строения органических соединений, которая не потеряла свою актуальность и в наше время. Рассмотрим основные положения этой теории:

1) все атомы в молекулах органических веществ соединены друг с другом в определенной последовательности в соответствии с их валентностью. Атомы углерода имеют постоянную валентность, равную четырем, и могут образовывать друг с другом цепи различного строения;

2) физические и химические свойства любого органического вещества зависят не только от состава его молекул, но также и от порядка соединения атомов в этой молекуле между собой;

3) отдельные атомы, а также группы атомов в молекуле оказывают влияние друг на друга. Такое взаимное влияние отражается в физических и химических свойствах соединений;

4) исследуя физические и химические свойства органического соединения можно установить его строение. Верно также обратное – зная строение молекулы того или иного вещества, можно спрогнозировать его свойства.

Аналогично тому, как периодический закон Д.И.Менделева стал научным фундаментом неорганической химии, теория строения органических веществ А.М. Бутлерова фактически стала отправной точкой в становлении органической химии как науки. Следует отметить, что после создания теории строения Бутлерова органическая химия начала свое развитие очень быстрыми темпами.

Изомерия и гомология

Согласно второму положению теории Бутлерова, свойства органических веществ зависят не только от качественного и количественного состава молекул, но и от порядка соединения атомов в этих молекулах между собой.

В связи с этим, среди органических веществ широко распространено такое явление как изомерия.

Изомерия – явление, когда разные вещества имеют абсолютно одинаковый состав молекул, т.е. одинаковую молекулярную формулу.

Очень часто изомеры сильно отличаются по физическим и химическим свойствам. Например:

Типы изомерии

Структурная изомерия

а) Изомерия углеродного скелета

б) Изомерия положения:

кратной связи

заместителей:

функциональных групп:

в) Межклассовая изомерия:

Межклассовая изомерия имеет место, когда соединения, являющиеся изомерами, относятся к разным классам органических соединений.

Пространственная изомерия

Пространственная изомерия — явление, когда разные вещества при одинаковом порядке присоединения атомов друг к другу отличаются друг от друга фиксировано-различным положением атомов или групп атомов в пространстве.

Существует два типа пространственной изомерии – геометрическая и оптическая. Задания на оптическую изомерию на ЕГЭ не встречаются, поэтому рассмотрим только геометрическую.

Если в молекуле какого-либо соединения есть двойная C=C связь или цикл, иногда в таких случаях возможно явление геометрической или цис-транс -изомерии.

Например, такой вид изомерии возможен для бутена-2. Смысл ее заключается в том, что двойная связь между атомами углерода фактически имеет плоское строение, а заместители при этих атомах углерода могут фиксированно располагаться либо над, либо под этой плоскостью:

Когда одинаковые заместители находятся по одну сторону плоскости говорят, что это цис -изомер, а когда по разные — транс -изомер.

На в виде структурных формул цис- и транс -изомеры (на примере бутена-2) изображают следующим образом:

Отметим, что геометрическая изомерия невозможна в случае, если хотя бы у одного атома углерода при двойной связи будет два одинаковых заместителя. Так, например, цис-транс- изомерия невозможна для пропена:


Пропен не имеет цис-транс -изомеров, так как при одном из атомов углерода при двойной связи два идентичных «заместителя» (атомы водорода)

Как можно видеть из иллюстрации выше, если поменять местами метильный радикал и атом водорода, находящиеся при втором углеродном атоме, по разные стороны плоскости, мы получим ту же самую молекулу, на которую просто посмотрели с другой стороны.

Влияние атомов и групп атомов друг на друга в молекулах органических соединений

Понятие о химической структуре как о последовательности связанных друг с другом атомов было существенно расширено с появлением электронной теории. С позиций данной теории можно объяснить, каким образом атомы и группы атомов в молекуле оказывают влияние друг на друга.

Различают два возможных способа влияния одних участков молекулы на другие:

1) Индуктивный эффект

2) Мезомерный эффект

Индуктивный эффект

Для демонстрации данного явления возьмем для примера молекулу 1-хлорпропана (CH 3 CH 2 CH 2 Cl). Связь между атомами углерода и хлора является полярной, поскольку хлор имеет намного более высокую электроотрицательность по сравнению с углеродом. В результате смещения электронной плотности от атома углерода к атому хлора на атоме углерода формируется частичный положительный заряд (δ+), а на атоме хлора — частичный отрицательный (δ-):

Смещение электронной плотности от одного атома к другому часто обозначают стрелкой, направленной к более электроотрицательному атому:

Однако, интересным является такой момент, что, кроме смещения электронной плотности от первого атома углерода к атому хлора, также имеет место смещение, но в несколько меньшей степени от второго атома углерода к первому, а также от третьего ко второму:

Такое смещение электронной плотности по цепи σ-связей называют индуктивным эффектом (I ). Данный эффект затухает по мере удаления от влияющей группы и уже практически не проявляется после 3 σ-связей.

В случае, когда атом или группа атомов обладают большей электроотрицательностью по сравнению с атомами углерода, говорят, что такие заместители обладают отрицательным индуктивным эффектом (-I ). Таким образом, в рассмотренном выше примере отрицательным индуктивным эффектом обладает атом хлора. Кроме хлора, отрицательным индуктивным эффектом обладают следующие заместители:

–F, –Cl, –Br, –I, –OH, –NH 2 , –CN, –NO 2 , –COH, –COOH

Если электроотрицательность атома или группы атомов меньше электроотрицательности атома углерода, фактически происходит передача электронной плотности от таких заместителей к углеродным атомам. В таком случае говорят, что заместитель обладает положительным индуктивным эффектом (+I ) (является электронодонорным).

Так, заместителями с +I -эффектом являются предельные углеводородные радикалы. При этом выраженность +I -эффекта возрастает с удлинением углеводородного радикала:

–CH 3 , –C 2 H 5 , –C 3 H 7 , –C 4 H 9

Следует отметить, что атомы углерода, находящиеся в разных валентных состояниях, обладают также и разной электроотрицательностью. Атомы углерода в состоянии sp-гибридизации имеют большую электроотрицательность по сравнению с атомами углерода в состоянии sp 2 -гибридизации, которые, в свою очередь, более электроотрицательны, чем атомы углерода в состоянии sp 3 -гибридизации.

Мезомерный эффект (М) , или эффект сопряжения, - влияние заместителя, передаваемое по системе сопряженных π-связей.

Знак мезомерного эффекта определяется по тому же принципу, что и знак индуктивного эффекта. Если заместитель увеличивает электронную плотность в сопряженной системе, он обладает положительным мезомерным эффектом (+М ) и является электронодонорным. Положительным мезомерным эффектом обладают двойные углерод-углеродные связи, заместители, содержащие неподеленную электронную пару: -NH 2 , -OН, галогены.

Отрицательным мезомерным эффектом (–М ) обладают заместители, оттягивающие электронную плотность от сопряженной системы, при этом электронная плотность в системе уменьшается.

Отрицательным мезомерным эффектом обладают группы:

–NO 2 , –COOH, –SO 3 H, -COH, >C=O

За счет перераспределения электронной плотности за счет мезомерного и индуктивного эффектов в молекуле на некоторых атомах появляются частичные положительные или отрицательные заряды, что имеет отражение в химических свойствах вещества.

Графически мезомерный эффект показывают изогнутой стрелкой, которая начинается в центре электронной плотности и завершается там, куда смещается электронная плотность. Так, например, в молекуле хлористого винила мезомерный эффект возникает при сопряжении неподеленной электронной пары атома хлора, с электронами π-связи между углеродными атомами. Таким образом, в результате этого на атоме хлора появляется частичный положительный заряд, а обладающее подвижностью π-электронное облако под воздействием электронной пары смещается в сторону крайнего атома углерода, на котором возникает вследствие этого частичный отрицательный заряд:

Если в молекуле имеются чередующиеся одинарные и двойные связи, то говорят, что молекула содержит сопряженную π-электронную систему. Интересным свойством такой системы является то, что мезомерный эффект в ней не затухает.

Все вещества, которые содержат углеродный атом, помимо карбонатов, карбидов, цианидов, тиоционатов и угольной кислоты, представляют собой органические соединения. Это значит, что они способны создаваться живыми организмами из атомов углерода посредством ферментативных или прочих реакций. На сегодняшний день многие органические вещества можно синтезировать искусственно, что позволяет развивать медицину и фармакологию, а также создавать высокопрочные полимерные и композитные материалы.

Классификация органических соединений

Органические соединения являются самым многочисленным классом веществ. Здесь присутствует порядка 20 видов веществ. Они различны по химическим свойствам, отличаются физическими качествами. Их температура плавления, масса, летучесть и растворимость, а также агрегатное состояние при нормальных условиях также различны. Среди них:

  • углеводороды (алканы, алкины, алкены, алкадиены, циклоалканы, ароматические углеводороды);
  • альдегиды;
  • кетоны;
  • спирты (двухатомные, одноатомные, многоатомные);
  • простые эфиры;
  • сложные эфиры;
  • карбоновые кислоты;
  • амины;
  • аминокислоты;
  • углеводы;
  • жиры;
  • белки;
  • биополимеры и синтетические полимеры.

Данная классификация отражает особенности химического строения и наличие специфических атомных групп, определяющих разность свойств того или иного вещества. В общем виде классификация, в основе которой лежит конфигурация углеродного скелета, не учитывающая особенностей химических взаимодействий, выглядит по-другому. Соответственно ее положениям, органические соединения делятся на:

  • алифатические соединения;
  • ароматические вещества;
  • гетероциклические вещества.

Данные классы органических соединений могут иметь изомеры в разных группах веществ. Свойства изомеров различны, хотя их атомный состав может быть одинаковым. Это вытекает из положений, заложенных А. М. Бутлеровым. Также теория строения органических соединений является руководящей основой при проведении всех исследований в органической химии. Ее ставят на один уровень с менделеевским Периодическим законом.

Само понятие о химическом строении ввел А. М. Бутлеров. В истории химии оно появилось 19 сентября 1861 года. Ранее в науке существовали различные мнения, а часть ученых вовсе отрицало наличие молекул и атомов. Потому в органической и неорганической химии не было никакого порядка. Более того, не существовало закономерностей, по которым можно было судить о свойствах конкретных веществ. При этом были и соединения, которые при одинаковом составе проявляли разные свойства.

Утверждения А. М. Бутлерова во многом направили развитие химии в нужное русло и создали для нее прочнейший фундамент. Посредством нее удалось систематизировать накопленные факты, а именно, химические или же физические свойства некоторых веществ, закономерности вступления их в реакции и прочее. Даже предсказание путей получения соединений и наличие некоторых общих свойств стало возможным благодаря данной теории. А главное, А. М. Бутлеров показал, что структуру молекулы вещества можно объяснить с точки зрения электрических взаимодействий.

Логика теории строения органических веществ

Поскольку до 1861 года в химии многие отвергали существование атома или же молекулы, то теория органических соединений стала революционным предложением для ученого мира. И поскольку сам Бутлеров А. М. исходит лишь из материалистических умозаключений, то ему удалось опровергнуть философские представления об органике.

Ему удалось показать, что молекулярное строение можно распознать опытным путем посредством химических реакций. К примеру, состав любого углевода можно выяснить посредством сжигания его определенного количества и подсчета образовавшейся воды и углекислого газа. Количество азота в молекуле амина подсчитывается также при сжигании путем измерения объема газов и выделения химического количества молекулярного азота.

Если рассматривать суждения Бутлерова о химическом строении, зависящем от структуры, в обратном направлении, то напрашивается новый вывод. А именно: зная химическое строение и состав вещества, можно эмпирически предположить его свойства. Но самое главное - Бутлеров объяснил, что в органике встречается огромное количество веществ, проявляющих разные свойства, но имеющие одинаковый состав.

Общие положения теории

Рассматривая и исследуя органические соединения, Бутлеров А. М. вывел некоторые важнейшие закономерности. Он объединил их в положения теории, объясняющей строение химических веществ органического происхождения. Положения теории таковы:

  • в молекулах органических веществ атомы соединены между собой в строго определенной последовательности, которая зависит от валентности;
  • химическое строение - это непосредственный порядок, согласно которому соединены атомы в органических молекулах;
  • химическое строение обуславливает наличие свойств органического соединения;
  • в зависимости от строения молекул с одинаковым количественным составом возможно появление различных свойств вещества;
  • все атомные группы, участвующие в образовании химического соединения, имеют взаимное влияние друг на друга.

Все классы органических соединений построены согласно принципам данной теории. Заложив основы, Бутлеров А. М. смог расширить химию как область науки. Он пояснил, что благодаря тому, что в органических веществах углерод проявляет валентность равную четырем, обуславливается многообразие данные соединений. Наличие множества активных атомных групп определяет принадлежность вещества к определенному классу. И именно за счет наличия специфических атомных групп (радикалов) появляются физические и химические свойства.

Углеводороды и их производные

Данные органические соединения углерода и водорода являются самыми простыми по составу среди всех веществ группы. Они представлены подклассом алканов и циклоалканов (насыщенных углеводородов), алкенов, алкадиенов и алкатриенов, алкинов (непредельных углеводородов), а также подклассом ароматических веществ. В алканах все атомы углерода соединены только одинарной С-С связью, из-за чего в состав углеводорода уже не может быть встроен ни один атом Н.

В непредельных углеводородах водород может встраиваться по месту наличия двойной С=С связи. Также С-С связь может быть тройной (алкины). Это позволяет данным веществам вступать во множество реакций, связанных с восстановлением или присоединением радикалов. Все остальные вещества для удобства изучения их способности вступать в реакции рассматриваются как производные одного из классов углеводородов.

Спирты

Спиртами называются более сложные, чем углеводороды органические химические соединения. Они синтезируются в результате протекания ферментативных реакций в живых клетках. Самым типичным примером является синтез этанола из глюкозы в результате брожения.

В промышленности спирты получают из галогеновых производных углеводородов. В результате замещения галогенового атома на гидроксильную группу и образуются спирты. Одноатомные спирты содержат лишь одну гидроксильную групп, многоатомные - две и более. Примером двухатомного спирта является этиленгликоль. Многоатомный спирт - это глицерин. Общая формула спиртов R-OH (R - углеродная цепь).

Альдегиды и кетоны

После того как спирты вступают в реакции органических соединений, связанные с отщеплением водорода от спиртовой (гидроксильной) группы, замыкается двойная связь между кислородом и углеродом. Если данная реакция проходит по спиртовой группе, расположенной у концевого углеродного атома, то в результате ее образуется альдегид. Если углеродный атом со спиртовой расположен не на конце углеродной цепи, то результатом реакции дегидратации является получение кетона. Общая формула кетонов - R-CO-R, альдегидов R-COH (R - углеводородный радикал цепи).

Эфиры (простые и сложные)

Химическое строение органических соединений данного класса усложненное. Простые эфиры рассматриваются как продукты реакции между двумя молекулами спиртов. При отщеплении воды от них образуется соединение образца R-O-R. Механизм реакции: отщепление протона водорода от одного спирта и гидроксильной группы от другого спирта.

Сложные эфиры - продукты реакции между спиртом и органической карбоновой кислотой. Механизм реакции: отщепление воды от спиртовой и карбоновой группы обеих молекул. Водород отщепляется от кислоты (по гидроксильной группе), а сама ОН-группа отделяется от спирта. Полученное соединение изображается как R-CO-O-R, где буковой R обозначены радикалы - остальные участки углеродной цепи.

Карбоновые кислоты и амины

Карбоновыми кислотами называются особенные вещества, играющие важную роль в функционировании клетки. Химическое строение органических соединений такое: углеводородный радикал (R) с присоединенной к нему карбоксильной группой (-СООН). Карбоксильная группа может располагаться только у крайнего атома углерода, потому как валентность С в группе (-СООН) равна 4.

Амины - это более простые соединения, которые являются производными углеводородов. Здесь у любого атома углерода располагается аминный радикал (-NH2). Существуют первичные амины, у которых группа (-NH2) присоединяется к одному углероду (общая формула R-NH2). У вторичных аминов азот соединяется с двумя углеродными атомами (формула R-NH-R). У третичных аминов азот соединен с тремя углеродными атомами (R3N), где р - радикал, углеродная цепь.

Аминокислоты

Аминокислоты - комплексные соединения, которые проявляют свойства и аминов, и кислот органического происхождения. Существует несколько их видов в зависимости от расположения аминной группы по отношению к карбоксильной. Наиболее важны альфа-аминокислоты. Здесь аминная группа расположена у атома углерода, к которому присоединена карбоксильная. Это позволяет создавать пептидную связь и синтезировать белки.

Углеводы и жиры

Углеводы являются альдегидоспиртами или кетоспиртами. Это соединения с линейной или циклической структурой, а также полимеры (крахмал, целлюлоза и прочие). Их важнейшая роль в клетке - структурная и энергетическая. Жиры, а точнее липиды, выполняют те же функции, только участвуют в других биохимических процессах. С точки зрения химического строения жир является сложным эфиром органических кислот и глицерина.

Тема: Основные положения теории строения органических соединений А. М. Бутлерова.

Теория химического строения органических соединений, выдвинутая А. М. Бутлеровым во второй половине прошлого века (1861 г.), была подтверждена работами многих ученых, в том числе учениками Бутлерова и им самим. Оказалось возможным на ее основе объяснить многие явления, до той поры не имевшие толкования: , гомологию, проявление атомами углерода четырехвалентности в органических веществах. Теория выполнила и свою прогностическую функцию: на ее основе ученые предсказывали существование неизвестных еще соединений, описывали свойства и открывали их. Так, в 1862–1864 гг. А. М. Бутлеров рассмотрел пропиловых, бутиловых и амиловых спиртов, определил число возможных изомеров и вывел формулы этих веществ. Существование их позднее было экспериментально доказано, причем некоторые из изомеров синтезировал сам Бутлеров.

В течение XX в. положения теории химического строения химических соединений были развиты на основе новых воззрений, распространившихся в науке: теории строения атома, теории химической связи, представлений о механизмах химических реакций. В настоящее время эта теория имеет универсальный характер, то есть справедлива не только для органических веществ, но и для неорганических.

Первое положение. Атомы в молекулах соединяются в определенном порядке в соответствии с их валентностью. Углерод во всех органических и в большинстве неорганических соединений четырехвалентен.

Очевидно, что последнюю часть первого положения теории легко объяснить тем, что в соединениях атомы углерода находятся в возбужденном состоянии:

атомы четырехвалентного углерода могут соединяться друг с другом, образуя различные цепи:

Порядок соединения атомов углерода в молекулах может быть различным и зависит от вида ковалентной химической связи между атомами углерода - одинарной или кратной (двойной и тройной):

Второе положение. Свойства веществ зависят не только от их качественного и количественного состава, но и от строения их молекул.

Это положение объясняет явление .

Вещества, имеющие одинаковый состав, но разное химическое или пространственное строение, а следовательно, и разные свойства, называют изомерами.

Основные виды :

Структурная изомерия, при которой вещества различаются порядком связи атомов в молекулах: углеродного скелета

положения кратных связей:

заместителей

положения функциональных групп

Третье положение. Свойства веществ зависят от взаимного влияния атомов в молекулах.

Например, в уксусной кислоте в реакцию со щелочью вступает только один из четырех атомов водорода. На основании этого можно предположить, что только один атом водорода связан с кислородом:

С другой стороны, из структурной формулы уксусной кислоты можно сделать вывод о наличии в ней одного подвижного атома водорода, то есть о ее одноосновности.

Основные направления развития теории строения химических соединений и ее значение.

Во времена А. М. Бутлерова в органической химии широко использовали

эмпирические (молекулярные) и структурные формулы. Последние отражают порядок соединения атомов в молекуле согласно их валентности, которая обозначается черточками.

Для простоты записи часто используют сокращенные структурные формулы, в которых черточками обозначают только связи между атомами углерода или углерода и кислорода.

И волокна, изделия из которых используют в технике, быту, медицине, сельском хозяйстве. Значение теории химического строения А. М. Бутлерова для органической химии можно сравнить со значением Периодического закона и Периодической системы химических элементов Д. И. Менделеева для неорганической химии. Недаром в обеих теориях так много общего в путях их становления, направлениях развития и общенаучном значении.

ТЕОРИЯ СТРОЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Еще со времени открытия огня человек разделил вещества на горючие и негорючие. К первой группе относились в основном продукты растительного и животного происхождения, а ко второй – преимущественно минерального происхождения. Таким образом, между способностью вещества к горению и принадлежностью его к живому и неживому миру существовала определенная связь.

В 1867 г. Й. Берцелиус предложил называть соединения первой группы органическими, а вещества, подобные воде и солям, которые характерны для неживой природы, определил, как неорганические.

Некоторые органические вещества в более или менее чистом виде известны человеку с незапамятных времен (уксус, многие органические красители). Ряд органических соединений, как, например, мочевина, этиловый спирт, «серный эфир» были получены еще алхимиками. Очень многие вещества, особенно органические кислоты (щавелевая, лимонная, молочная и др.) и органические основания (алкалоиды), были выделены из растений и животных во второй половине XVIII века и первых годах XIX века. Это время и следует считать началом научной органической химии.

v Теория витализма . В XVIII веке и первой четверти XIX века господствовало убеждение, что химия живой природы принципиально отлична от химии мертвой природы (минеральной химии), и что организмы строят свои вещества с участием особой жизненной силы, без которой искусственно, в колбе, их создать нельзя. То время было временем господства витализма – учения, рассматривающего жизнь как особое явление, подчиняющееся не законам мироздания, а влиянию особых жизненных сил.

Защитником витализма веком раньше был Г. Шталь, основатель теории флогистона. По его мнению, химики, имевшие дело с самыми обычными веществами, осуществить их превращения, требовавшие участия жизненных сил, естественно, не могли.

Первые сомнения в состоятельности виталистической теории заронил ученик Й. Берцелиуса немецкий химик Ф. Велер, который синтезировал из цианата аммония, безоговорочно причисленного к неорганическим веществам, мочевину:

Не надо переоценивать значения этой работы, т.к. мочевина фактически является перестроенной молекулой цианата аммония, но, тем не менее, нельзя и отрицать значение открытия Ф. Велера, т.к. оно способствовало низвержению витализма и вдохновило химиков на синтез органических веществ.

В 1845 г. А. Кольбе, ученик Ф. Велера, осуществил синтез из элементов, т.е. полный синтез, уксусной кислоты. Французский химик П. Бертло получил метиловый и этиловый спирты, метан. Тем не менее, существовало мнение, что синтез столь сложного вещества, как сахар, никогда не будет осуществлен. Однако уже в 1861 г. А. Бутлеров синтезировал сахароподобное вещество – метиленитан.

Одновременно с этими этапными для органической химии синтезами быстро росло общее число синтезированных углеродосодержащих соединений, не встречающихся в природе. Так, в 1825 г. М. Фарадей получил бензол, еще ранее стали известны этилен, бромистый этилен и ряд производных бензола. В 1842 г. Н. Зинин из нитробензола получил анилин, а в 50-х годах того же столетия из анилина были синтезированы первые «анилиновые красители» – мовеин У. Перкина и фуксин. К середине 50-х годов ХIХ в. виталистическая теория потерпела крах окончательно.

v Дуалистическая теория Й. Берцелиуса . Основы структурной химии органических веществ заложил Й. Берцелиус, который вслед за А. Лавуазье распространил на органические объекты количественный анализ и создал для объяснения их природы дуалистическую (электрохимическую ) теорию – первую научную теорию в химии. По Й. Берцелиусу, атом элемента соединяется с кислородом вследствие того, что он электроположителен, а кислород электроотрицателен; при соединении заряды нейтрализуются. Й. Берцелиус считал, что его теория применима и к органической химии, с той разницей, что в органических соединениях радикалы в оксидах более сложные, например, углеводородные. Иначе эту теорию еще называют «теорией сложных радикалов ».

По А. Лавуазье радикалы органических соединений состоят из углерода, водорода и кислорода, к которым в случае веществ животного происхождения добавляется еще азот и фосфор.

v Теория радикалов . Развитием теории Берцелиуса стала теория радикалов. В 1810 г. Ж. Гей-Люссак заметил, что группа СN (цианидная группа) может переходить из соединения в соединение, не разделяясь на отдельные атомы углерода и азота. Такие группы стали называть радикалами .

Постепенно радикалы стали рассматривать, как неизменные составные части органических веществ (подобные элементам в неорганических соединениях), которые переходят в реакциях из одного соединения в другое. Некоторые исследователи, особенно немецкой школы (Ф. Велер, Ю. Либих), вдохновленные открытием серии новых элементов, руководствовались идеей поиска новых радикалов. В частности, они нашли радикалы бензоил С 6 Н 5 СО и ацетил СН 3 СО. К этому времени стало известно также, что вещества, называющиеся сейчас этиловым спиртом, диэтиловым эфиром, хлористым этилом и этилнитритом, содержат радикал этил –С 2 Н 5 . Подобным же способом были идентифицированы и другие радикалы , т.е. группы атомов, остающиеся неизменными при различных химических превращениях.

Множественные попытки выделить радикалы в свободном состоянии оказались неудачными или проводили к ошибочным результатам. Так, до установления закона Авогадро этан, выделенный по реакции Вюрца:

считался сначала радикалом метилом –СН 3 , и лишь последующее определение молекулярной массы показало ее удвоенную величину.

Общее признание принципа неизменности радикалов, было поколеблено, когда французский химик Ж. Дюма и его ученик О. Лоран открыли реакцию металепсии . При действии хлора на органические соединения хлор вступает в вещество так, что на каждый вступивший эквивалент хлора из вещества удаляется один эквивалент водорода в виде хлороводорода. При этом химический характер соединения не меняется. Противоречие с теорией Й. Берцелиуса было разительным: хлор, «отрицательно заряженный элемент», входил на место «положительного заряженного водорода», и молекула не только сохранялась, но и не изменялся ее химический характер. Оказалось возможным заменять водород на другие электроотрицательные элементы – галогены, кислород, серу и т. д., и электрохимическая дуалистическая теория Й. Берцелиуса рухнула. Все очевиднее становилось, что неизменных радикалов не существует, и что в одних реакциях радикалы переходят во вновь образующиеся молекулы целиком, а в других подвергаются изменениям.

v Теория типов . Попытки найти что-то общее в природе органических молекул заставили отказаться от безуспешных поисков неизменяемой части молекулы и перейти к наблюдениям за ее наиболее изменяемой частью, которую мы теперь называем функциональной группой . Эти наблюдения привели к теории типов Ш. Жерара.

В спиртах и кислотах Ш. Жерар увидел аналоги воды, в хлорпроизводных углеводородов – аналоги хлористого водорода, в алканах – водорода, во вновь открытых аминах – аммиака.

Большинство сторонников теории типов (Ш. Жерар, А. Кольбе, А. Кекуле) исходили из того, что невозможно определить строение веществ экспериментальным путем. Их можно только классифицировать. В зависимости от того, в какие реакции вещество вступает, одно и то же органическое соединение можно относить к разным типам. Теория с большой натяжкой классифицировала огромный опытный материал, а о возможности целенаправленного синтеза не могло быть и речи. Органическая химия в те годы представлялась, по словам Ф. Велера, «…дремучим лесом, полным чудесных вещей, огромной чащей без выхода, без конца, куда не осмеливаешься проникнуть». Дальнейшее развитие химии требовало создания новой, более прогрессивной теории.

Одним из недостатков теории типов является стремление уложить все органические соединения в более или менее формальные схемы. Заслуга этой теории состоит в уточнении понятий о гомологических рядах и химических функциях, окончательно освоенных органической химией. Ее роль в развитии науки несомненна, т.к. она привела к понятию валентности и открыла путь к теории строения органических соединений.

v Теория строения органических соединений . Ряд исследований предшествовал появлению основополагающей теории строения органических соединений. Так, А. Вильямсон в 1851 г. ввел понятие о так называемых многоатомных радикалах, т. е. о радикалах, способных заместить два и более атомов водорода. Тем самым стало возможным относить вещества сразу к двум и более типам, например, аминоуксусная кислота может быть отнесена к типам воды и аммиака:

Такие вещества мы сейчас называем гетерофункциональными соединениями.

Чтобы соблюсти постоянство валентности углерода и кислорода, оказалось необходимым также принять существование двойной связи в этилене (С=С), в альдегидах и кетонах (С=О).

Шотландский химик Л. Купер предложил современное изображение формул, в которых знак элемента снабжался числом черточек, равным его валентности:

Однако и А. Кекуле и Л. Куперу еще чужда была идея неразрывной связи химических и физических свойств молекул с ее строением, выраженным формулой, идея единственности этого строения. А. Кекуле допускал описание одного и того же соединения посредством нескольких разных формул, в зависимости от того, какую совокупность реакций данного вещества хотели выразить формулой. По существу, это были так называемые реакционные формулы.

Основные положения теории строения органических соединений были обнародованы А. Бутлеровым в 1861 г. Ему же принадлежит и сам термин строение или структура . Теория Бутлерова базировалась на материалистических представлениях, основанных на атомистическом учении М. Ломоносова и Д. Дальтона. Сущность этой теории сводится к следующим основным положениям:

1. Химическая природа каждой сложной молекулы определяется природой составляющих ее атомов, их количеством и химическим строением.

2. Химическое строение – это определенный порядок чередования атомов в молекуле, взаимное влияние атомов друг на друга.

3. Химическое строение веществ определяет их физические и химические свойства.

4. Изучение свойств веществ позволяет определить их химическое строение.

Химическим строением А. Бутлеров назвал последовательность атомов в молекуле. Он указал, каким путем на основании изучения химических реакций данного вещества можно установить его структуру, которая для каждого химического индивидуума является адекватной. В соответствии с этой формулой можно и синтезировать данные соединения. Свойства определенного атома в соединении, прежде всего, зависят от того, с каким атомом связан интересующий нас атом. Пример – поведение различных атомов водорода в спиртах.

Теория строения включила и растворила в себе теорию радикалов, поскольку любая часть молекулы, переходящая в реакции из одной молекулы в другую является радикалом, но уже не обладает прерогативой неизменности. Она вобрала в себя и теорию типов, ибо присутствующие в молекуле неорганические или содержащие углерод группы, ведущие свое начало от воды (гидроксил –ОН), аммиака (аминогруппа –NH 2), угольной кислоты (карбоксил –COOH), в первую очередь определяли химическое поведение (функцию) молекулы и делали его сходным с поведением прототипа.

Структурная теория строения органических соединений позволила классифицировать огромный экспериментальный материал и указала пути целенаправленного синтеза органических веществ.

Следует отметить, что установление структуры вещества химическим путем осуществляют каждый раз индивидуально. Нужна уверенность в индивидуальности веществ и знание количественного элементного состава и молекулярной массы. Если известны состав соединения и его молекулярная масса, можно вывести молекулярную формулу. Приведем пример выведения структурных формул для веществ с составом С 2 Н 6 О.

Первое вещество реагирует с натрием по типу воды, выделяя один атом водорода на один атом натрия, причем натрий входит в состав молекулы продукта реакции вместо ушедшего водорода.

2C 2 H 6 O + 2Na → H 2 + 2C 2 H 5 ONa

В полученное соединение уже не удается ввести второй атом натрия. То есть, можно предположить, что вещество содержало гидроксильную группу и, выделяя ее в формуле соединения, последнее можно записать так: С 2 Н 5 ОН. Подтверждением этого вывода служит то, что при действии на исходное вещество бромида фосфора(III) гидроксильная группа уходит из молекулы как целое, переходя к атому фосфора и заменяясь на атом брома.

2C 2 H 5 OH + PBr 3 → 3C 2 H 5 Br + H 3 PO 3

Изомерное ему вещество, т.е. имеющее такую же брутто-формулу, не реагирует с металлическим натрием, а при взаимодействии с иодоводородом разлагается по уравнению:

C 2 H 6 O + HI → CH 3 I + CH 4 O .

Из этого можно сделать вывод, что в исходном веществе два атома углерода не связаны друг с другом, т. к. иодоводород не способен разрывать С–С-связь. В нем нет и особого водорода, способного замещаться на натрий. После разрыва молекулы этого вещества при действии иодоводорода образуются СН 4 О и СН 3 I. Последнему нельзя приписать иную структуру, чем указанную ниже, поскольку и водород, и иод одновалентны.

Второе из образовавшихся веществ, СН 4 О, ведет себя в реакции не только с натрием, но и с бромидом фосфора(III), подобно этиловому спирту.

2CH 4 O + 2Na → 2CH 3 ONa + H 2

3CH 4 O + PBr 3 → CH 3 Br + P(OH) 3

Естественно предположить, что иодоводород разорвал связь двух метильных групп, осуществляющуюся атомом кислорода.

Действительно, при действии одного из продуктов этой реакции на натриевое производное другого удается осуществить синтез исходного вещества, изомерного этиловому спирту, и подтвердить принятую для него структуру диметилового эфира.

Первым пробным камнем проверки теории строения органических соединений явился синтез предсказанных, но неизвестных в то время трет -бутилового спирта и изобутилена, осуществленный автором созданной теории и его учеником А. Зайцевым. Другой ученик А. Бутлерова – В. Марковников синтезировал теоретически предсказанную изомасляную кислоту и на ее основе изучил взаимное влияние атомов в молекуле.

Следующий этап в развитии теоретических вопросов связывают с возникновением стереохимических представлений, развитых в работах Я. Вант-Гоффа и Ж. Ле Беля.

В начале ХХ в. закладываются представления об электронном строении атомов и молекул. На электронном уровне трактуется природа химической связи и реакционной способности органических молекул.

Создание теории органических веществ послужило основой синтетических методов не только в лаборатории, но и в промышленности. Возникают производства синтетических красителей, взрывчатых веществ и медикаментов. В органический синтез широко внедряются катализаторы и высокие давления.

В области органического синтеза осуществлено получение многих природных веществ (хлорофилл, витамины, антибиотики, гормоны). Выявлена роль нуклеиновых кислот в хранении и передаче наследственности.

Решение многих вопросов в строении сложных органических молекул стало эффективным благодаря привлечению современных спектральных методов.


Шталь Г. (1659-1734) – немецкий химик и врач. Создатель теории флогистона – первой химической теории, позволившей покончить с теоретическими возрениями алхимии.

Кольбе А. (1818 – 1884) – немецкий химик-органик, создатель теории радикалов. Синтезировал ряд органических кислот. Разработал электрохимический метод получения алканов – метод Кольбе.

Бертло П. (1827-1907) – французский химик. Один из основоположников органической химии. Фундаментальные работы в области термохимии.

Фарадей М. (1791-1867) – английский физик и химик. Один из основателей учения об электромагнетизме. Открыл количественные законы электролиза. Исследования в области сжиженных газов, стекла, органической химии.

Перкин У. ст. (1838-1907) –английский химик. Разработал промышленное производство красителей мовеина, ализарина. Открыл реакцию конденсации ароматических альдегидов с ангидридами карбоновых кислот (реакция Перкина ).

Вюрц Ш. (1817-1884) – французский химик Учился у Ю. Либиха, ассистент Ж. Дюма. Синтезировал амины, фенолы, этиленгликоль, молочную кислоту, провел альдольную и кротоновую конденсацию.

Дюма Ж. (1800-1884) – французский химик. Создал теорию радикалов. Открыл реакцию хлорирования, установил существование гомологического ряда – ряда муравьиной кислоты. Предложил способ количественного определения азота.

Лоран О. (1807-1853) – французский химик. Изучал продукты каменноугольной смолы. Открыл фталевую кислоту, индиго и нафталин.

Кекуле Ф. (1829 - 1896) – немецкий химик. Основные труды в области теоретической органической химии. Синтезировал антрахинон, трифенилметан.

Купер Л. (1834 - 1891) – шотландский химик, основные работы посвящены теоретическим проблемам химии.