Органические соединения. Простые и кратные связи в органических соединениях. Предельные и непредельные углеводороды. Геометрия простых и сложных молекул


Тема: Органические соединения.

План:

  1. Предпосылки создания предмета органическая химия.
  2. История органической химии.
  3. Основные методы органической химии.
  4. Теория Бутлерова. Основные положения. Свойства углерода, определяющие особенности строения.
  5. Гомологические ряды.
  6. Простые и кратные связи в органических соединениях. Предельные и непредельные углеводороды.
  7. Изомерия органических соединений.
  8. Взаимное влияние атомов.
  9. Классификация органических соединений.

Органические вещества известны человечеству с древнейших времен. Применяя сравнительно простые способы переработки растений, люди издавна умели получать сахар, душистые и лекарственные вещества, красители, мыло и т.д. Например, сахар выделяли из тростника, краситель синего цвета «индиго» – из восточно-азиатских растений, краситель пурпурного цвета «античный пурпур» – из морских улиток, а ализарин – из корней морены. Люди умели не только выделять органические вещества, но и подвергали их различным превращениям. Например, вино получали из виноградного сока, а уксус – из перебродившего вина.

Поиски новых превращений химических веществ оказались весьма плодотворными в средние века, когда интенсивно развивалась «алхимия». Не зная состава доступных в то время органических веществ, алхимики чисто эмпирически получили из них многие полезные вещества.

После фундаментальных работ М. Ломоносова и А. Лавуазье, сформулировавших закон сохранения веса веществ, химики научились определять состав органических веществ и выражать его в виде эмпирической формулы, отражающей минимальное целочисленное отношение атомов в молекуле, а затем и в виде молекулярной формулы, отражающей число атомов каждого элемента, входящего в состав молекулы. Эти работы открыли возможность развития органической химии как науки. В конце XVIII – начале XIX веков были открыты важнейшие углеводороды и установлены их молекулярные формулы. Метан CH4 был открыт А. Вольта в 1778г. при исследовании болотного газа. Этилен C2 H4 впервые был получен в 1795 г. действием концентрированной серной кислоты на этиловый спирт. Бензол C6 H6 был выделен М. Фарадеем в 1825 г. из конденсата светильного газа. Ацетилен C2 H2 был открыт Э. Дэви в 1836 г., а в 1862 г. получен Ф. Вёлером действием воды на карбид кальция.

Наличие углерода в каждом органическом веществе позволило шведскому химику И. Берцелиусу определить “органическую химию как химию соединений углерода” (1806 г.).

Углерод выделяется среди всех элементов тем, что его атомы могут связываться друг с другом в длинные цепи или циклы. Именно это свойство позволяет углероду образовывать миллионы соединений, изучению которых посвящена целая область — органическая химия.

Органическая химия — это химия соединений углерода. Согласно другому широко используемому определению, органическая химия — это химия углеводородов и их производных.

К настоящему времени число известных орг. соед. превышает 10 млн. и увеличивается каждый год на 250-300 тыс. Многообразие орг. соед. определяется уникальной способностью атомов углерода соединяться друг с другом простыми и кратными связями, образовывать соед. с практически неогранич. числом атомов, связанных в цепи, циклы, бициклы, трициклы, полициклы, каркасы и др., образовывать прочные связи почти со всеми элементами периодич. системы, а также явлением изомерии- существованием разных по св-вам в-в, обладающих одним и тем же составом и мол. массой.

Несколько причин обусловили проявление углеродом выше отмеченных свойств. Доказано, что энергия связи (прочность связи) С—С сопоставима с прочностью связей С—О. Связь Si -O намного прочнее связи Si -Si . Углерод обладает возможностью проявлять не одну, а целых три разновидности гибридизации орбиталей: в случае sp 3 -гибридизации образуются четыре гибридных орбитали, имеющие тетраэдрическую ориентацию; с их помощью образуются простые ковалентные связи: в случае sp 2 -гибридизации образуются три гибридные орбитали, ориентированные в одной плоскости, и в комбинации с негибридной орбиталью они образуют двойные кратные связи; наконец, с помощью sp -гибридных орбиталей, имеющих линейную ориентацию, и негибридных орбиталей между атомами углерода возникают тройные кратные связи. Сейчас хорошо известно, что атомы углерода способны образовывать простые, двойные и тройные связи не только друг с другом, но также и с другими элементами. Таким образом, современная теория строения молекул объясняет и огромное число органических соединений, и зависимость свойств этих соединений от их химического строения. Она же полностью подтверждает основные принципы теории химического строения, разработанные выдающимся русским ученым А.М.Бутлеровым и изложенные им в докладе "О теории химического строения" на международном съезде естествоиспытателей в 1861 г.

В XX веке дальнейшее развитие получили теория строения и концепции реакционной способности органических соединений. В работах Г. Льюиса, Р. Робинсона и К. Ингольда были развиты электронные представления, объяснившие природу связей в органических соединениях. Создание квантовой механики, а затем и квантовой химии послужило началом развития теории молекулярных орбиталей, открывшей новую страницу в понимании природы химического связывания.

Работы Э. Хюккеля, К. Фукуи, Р. Вудворда, М. Дьюара и Р. Гофмана открыли этап широкого применения орбитальных представлений в органической химии. Среди этих представлений особо следует отметить концепцию граничных орбиталей, которая связывает свойства и поведение органических молекул с их граничными электронными уровнями. В последние годы орбитальные представления получили мощную поддержку со стороны ряда физических методов. По данным фотоэлектронной спектроскопии, электронной трансмиссионной спектроскопии, спектроскопии электронного парамагнитного резонанса оказалось возможным оценивать энергии и симметрию электронных уровней молекул, а тем самым адекватность различных методов квантовохимических расчетов.

Возможности органической химии в настоящее время практически не ограничены как в области синтеза сложнейших природных структур, так и в области расчета и моделирования свойств органических молекул и макромолекул. Реализация этих возможностей требует, однако, безусловного владения основами органической химии.

С середины 20 в. происходят коренные изменения в методах химических исследований, в которые вовлекается широкий арсенал средств физики и математики. Классические задачи Х. — установление состава и строения веществ — всё успешнее решаются с использованием новейших физических методов.

Основным методом О.х. является синтез. Развитие методов синтеза в первую очередь способствовало установлению строения самых сложных соединений. Идеальным завершением процесса определения структуры молекул орг. соед. является полный синтез (тотальный синтез), т.е. получение с помощью совершенно однозначных хим. методов соединения, структура к-рого была предложена на основании изучения др. методами.

Неотъемлемой чертой теоретической и экспериментальной Х. стало применение новейшей быстродействующей вычислительной техники для квантовохимических расчётов, выявления кинетических закономерностей, обработки спектроскопических данных, расчёта структуры и свойств сложных молекул.

Из числа чисто химических методов, разработанных в 20 в., следует отметить микрохимический анализ, позволяющий производить аналитические операции с количествами веществ, в сотни раз меньшими, чем в методе обычного химического анализа. Большое значение приобрела хроматография, служащая не только для аналитических целей, но и для разделения весьма близких по химическим свойствам веществ в лабораторных и промышленных масштабах. Важную роль играет физико-химический анализ (ФХА) как один из методов определения химического состава и характера взаимодействия компонентов в растворах, расплавах и др. системах. В ФХА широко используются графические методы (диаграммы состояния и диаграммы состав — свойство). Классификация последних позволила уточнить понятие химического индивида, состав которого может быть постоянным и переменным (см. Дальтониды и бертоллиды). Предсказанный Курнаковым класс нестехиометрических соединений приобрёл большое значение в материаловедении и новой области — Х. твёрдого тела.

Люминесцентный анализ, метод меченых атомов (см. Изотопные индикаторы), рентгеновский структурный анализ, электронография, полярография и др. физико-химические методы анализа находят широкое применение в аналитической Х. Использование радиохимических методик позволяет обнаружить присутствие всего нескольких атомов радиоактивного изотопа (например, при синтезе трансурановых элементов).

Для установления строения химических соединений важное значение имеет молекулярная спектроскопия (см. Молекулярные спектры), с помощью которой определяются расстояния между атомами, симметрия, наличие функциональных групп и др. характеристики молекулы, а также изучается механизм химических реакций. Электронная энергетическая структура атомов и молекул, величина эффективных зарядов выясняются посредством эмиссионной и абсорбционной рентгеновской спектроскопии. Геометрия молекул исследуется методами рентгеновского структурного анализа.

Обнаружение взаимодействия между электронами и ядрами атомов (обусловливающего сверхтонкую структуру их спектров), а также между внешними и внутренними электронами позволило создать такие методы установления строения молекул, как ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР), ядерный квадрупольный резонанс (ЯКР), гамма-резонансная спектроскопия (см. Мёссбауэра эффект). Особую роль по широте применения приобрела ЯМР-спектроскопия. Для выяснения пространственных характеристик молекул возрастающее значение приобретают оптические методы: спектрополяриметрия, круговой дихроизм, дисперсия оптического вращения. Разрушение молекул в вакууме под влиянием электронного удара с идентификацией осколков применяется для установления их строения методом масс-спектроскопии. Арсенал кинетических методов пополнился средствами, связанными с использованием ЭПР- и ЯМР-спектроскопии (химическая поляризация ядер), метода импульсного фотолиза и радиолиза. Это позволяет изучать сверхбыстрые процессы, протекающие за время 10-9 сек и меньше.

Для исследования космических объектов с успехом применяются методы спектрального анализа в различных диапазонах электромагнитного спектра. В частности, методами радиоастрономии в межзвёздном пространстве были обнаружены облака химических соединений, включающие такие относительно сложные молекулы, как формальдегид, тиомочевину, метиламин, цианацетилен и др. С развитием космических полётов методы экспериментальной Х. стали применяться на внеземных объектах (Луна, Венера, Марс).

Решающая роль в создании теории строения органических соединений принадлежит великому русскому ученому Александру Михайловичу Бутлерову. 19 сентября 1861 года на 36-м съезде немецких естествоиспытателей А.М.Бутлеров обнародовал ее в докладе "О химическом строении вещества".

Основные положения теории химического строения А.М.Бутлерова можно свести к следующему:

  1. 1 . Все атомы в молекуле органического соединения связаны друг с другом в определенной последовательности в соответствии с их валентностью. Изменение последовательности расположения атомов приводит к образованию нового вещества с новыми свойствами. Например, составу вещества С 2 Н 6 О отвечают два разных соединения: диметиловый эфир (СН 3 -О-СН 3 ) и этиловый спирт (С 2 Н 5 ОН).

2 . Свойства веществ зависят от их химического строения. Химическое строение - это определенный порядок в чередовании атомов в молекуле, во взаимодействии и взаимном влиянии атомов друг на друга - как соседних, так и через другие атомы. В результате каждое вещество имеет свои особые физические и химические свойства. Например, диметиловый эфир - это газ без запаха, нерастворимый в воде, t°пл. = -138°C, t°кип. = 23,6°C; этиловый спирт - жидкость с запахом, растворимая в воде, t°пл. = -114,5°C, t°кип. = 78,3°C.
Данное положение теории строения органических веществ объяснило явление изомерии, широко распространенное в органической химии. Приведенная пара соединений - диметиловый эфир и этиловый спирт - один из примеров, иллюстрирующих явление изомерии.

  1. 3 . Изучение свойств веществ позволяет определить их химическое строение, а химическое строение веществ определяет их физические и химические свойства.
  1. 4. Атомы углерода способны соединятся между собой, образовывая углеродные цепи различного вида. Они могут быть как открытыми, так и замкнутыми (циклическими), как прямыми, так и разветвленными. В зависимости от числа связей, затрачиваемых атомами углерода на соединение друг с другом, цепи могут быть насыщенными (с одинарными связями) или ненасыщенными (с двойными и тройными связями).

5. Каждое органическое соединение имеет одну определенную формулу строения или структурную формулу, которую строят, основываясь на положении о четырехвалентном углероде и способности его атомов образовывать цепи и циклы. Строение молекулы как реального объекта можно изучить экспериментально химическими и физическими методами.

А.М.Бутлеров не ограничился теоретическими объяснениями своей теории строения органических соединений. Он провел ряд экспериментов, подтвердив предсказания теории получением изобутана, трет. бутилового спирта и т.д. Это дало возможность А.М.Бутлерову заявить в 1864 году, что имеющиеся факты позволяют ручаться за возможность синтетического получения любого органического вещества.

В дальнейшем развитии и обосновании теории строения органических соединений большую роль сыграли последователи Бутлерова - В.В.Марковников, Е.Е.Вагнер, Н.Д.Зелинский, А.Н.Несмеянов и др.

Среди многообразия органических соединений можно выделить группы веществ, которые сходны по химическим свойствам и отличаются друг от друга на группу СН2 .

Соединения, сходные по химическим свойствам, состав которых отличается друг от друга на группу СН2 , называются гомологами. Гомологи, расположенные в порядке возрастания их относительной молекулярной массы, образуют гомологический ряд. Группы СН2 называется гомологической разностью.

Примером гомологического ряда может служить ряд предельных углеводородов (алканов). Простейший его представитель - метан СН4 . Гомологами метана являются: этан С2 Н6 , пропан С3 Н8 , бутан С4 H 10 , пентан С5 Н12 , гексан С6 Н14 , гептан С7 Н16 и т. д. Формула любого последующего гомолога может быть получена прибавлением к формуле предыдущего углеводорода гомологической разности.

Состав молекул всех членов гомологического ряда может быть выражен одной общей формулой. Для рассмотренного гомологического ряда предельных углеводородов такой формулой будет Сn Н2 n +2 , где n - число атомов углерода.

Гомологические ряды могут быть построены для всех классов органических соединений. Зная свойства одного из членов гомологического ряда, можно сделать выводы о свойствах других представителей того же ряда. Это обусловливает важность понятия гомологии при изучении органической химии.

Органические вещества, содержащие только простые связи между атомами углерода, называют предельными. Предельным углеводородам соответствует общая формула Сn H2n+2 .

На один атом углерода в их молекулах приходится меньшее число атомов водорода, чем у предельных соединений.

Кратные связи и функциональные группы определяют класс соединения. Вещества, обладающие одинаковыми функциональными группами и (или) одинаковым набором кратных связей, имеют сходные свойства и относятся к одному классу. Кратные связи и функциональные группы определяют класс соединения. Вещества, содержащие кратные связи, образуют классы близких по свойствам соединений. Соединения с двойной связью называют алкенами, с тройной - алкинами. Соединения, не содержащие ни кратных связей, ни функциональных групп, также составляют отдельный класс органических веществ. Это - предельные углеводороды, или алканы.

Простейшим представителем и родоначальником предельных углеводородов является метан СН 4 . Строение молекулы метана можно выразить структурной (I) или электронной (II) формулой:

В предельных углеводородах атомы углерода находятся в первом валентном состоянии (sp 3 -гибpидизaция). В этом случае, .как известно, все четыре гибридные орбитали в пространстве составляют геометрическую фигуру — тетраэдр (углы между осями связей С—Н равны 109° 28"). Пространственное расположение атомов в молекуле метана можно показать с помощью тетраэдрических и шаростержневых моделей. Для этого наиболее удобны объемные модели Бриглеба, которые более наглядно отражают относительные размеры атомов в молекуле. Эти модели изготовлены в соответствии с действительным соотношением радиусов атомов (в масштабе 0,05 нм = 1 см).

Гомологический ряд предельных углеводородов (алканов) нормального (неразветвленного) строения и их одновалентные радикалы

Углеводород

(алкан)

Число

возможных

изомеров у алкана

Радикал (алкил)

Формула

Название

Формула

Название

СН 4

Метан

СН 3 -

Метил

С 2 Н 6

Этан

С 2 Н 5 -

Этил

С 3 Н 8

Пропан

С 3 Н 7 -

Пропил

С 4 Н 10

Бутан

С 4 Н 9 -

Бутил

С 5 Н 12

Пентан

С 5 Н 11 -

Пентил

С 6 Н 14

Гексан

С 6 Н 13 -

Гексил

C 7 H 16

Гептан

C 7 H 15 -

Гептил

C 8 H 18

Октан

C 8 H 17 -

Октил

С 9 Н 20

Нонан

С 9 Н 19 -

Нонил

С 10 Н 22

Декан

С 10 Н 21 -

Децил

(декил)

Гомологические ряды характерны для всех классов органических соединений. Они являются прекрасным подтверждением основного закона природы — перехода количественных изменений в качественные.

Встречающиеся в органических соединениях кратные связи (двойные или тройные): образуются при обобществлении двумя атомами более чем одной пары электронов:

Н 2 С: : СН 2 ; R 2 С: : О; HС: : : CH; RС: : : N и т.д.

Кратные связи являются сочетанием σ- и π-связей.

Двойная связь состоит из одной σ- и одной π-связей и осуществляется 4-мя общими электронами.

Тройная связь является комбинацией из одной σ- и двух π-связей и включает в себя шесть электронов.


  1. Число электронных пар, участвующих в образовании ковалентной связи называется порядком связи .

Таким образом, порядок простой связи равен 1 , двойной – 2 , тройной – 3 .
В случае сопряженных (делокализованных) связей
порядок связи отличается от этих целочисленных значений.

Современная органическая химия располагает сведениями о 10 млн органических соединений, количество которых ежегодно увеличивается на 250–300 тыс. наименований. Такое огромное количество органических веществ относится к сравнительно небольшому числу классов органических соединений, содержащих те или иные функциональные группы. Наличие этих функциональных групп и предопределяет характерные химические свойства данного класса соединений.

Способность атомов углерода к образованию четырех ковалентных связей, в том числе и с другими атомами углерода, открывает возможность существования нескольких соединений одного элементного состава — изомеров.

Все изомеры делят на два больших класса — структурные изомеры и пространственные изомеры.

Структурными называют изомеры, отвечающие различным структурным формулам органических соединений (с разным порядком соединения атомов).

Пространственные изомеры имеют одинаковые заместители у каждого атома углерода и отличаются лишь их взаимным расположением в пространстве.

Структурные изомеры. В соответствии с приведенной выше классификацией органических соединений по типам среди структурных изомеров выделяют три группы:

1) соединения, содержащие различные функциональные группы и относящиеся к различным классам органических соединений, например:

CH 3 -CH 2 -NO 2 HOOC-CH 2 -NH 2

нитроэтан амииоуксусная кислота (глицин)

2) соединения, отличающиеся углеродными скелетами:

бутан 2-метнлпропан (изобутан)

3) соединения, отличающиеся положением заместителя или кратной связи в молекуле:

СН3 -СН=СН-СН3 СН3 -СН2 -СН=СН2

бутен-2 бутен-1

пропанол-2 пропанол-1

Пространственные изомеры (стереоизомеры). Стереоизомеры можно разделить на два типа: геометрические изомеры оптические изомеры.

Геометрическая изомерия характерна для соединений, содержащих двойную связь или цикл. В таких молекулах часто возможно провести условную плоскость таким образом, что заместители у различных атомов углерода могут оказаться по одну сторону (цис-) или по разные стороны (транс-) от этой плоскости.

Если изменение ориентации этих заместителей относительно плоскости возможно только за счет разрыва одной из химических связей, то говорят о наличии геометрических изомеров. Геометрические изомеры отличаются своими физическими и химическими свойствами.


транс -1,2- цис-1,2- цис-бутен-2 транс-6утен-2
диметил- диметил-
циклопентан циклопентан

Оптическими изомерами называют молекулы, зеркальные изображения которых не совместимы друг с другом.

Таким свойством обладают молекулы, имеющие асимметрический центр — атом углерода, связанный с четырьмя различными заместителями. Например, в виде двух оптических изомеров существует молекула молочной кислоты СН 3 -СН(ОН)- СООН, содержащая один асимметрический центр:

Молекула органического соединения представляет собой совокупность атомов, связанных в определенном порядке, как правило, ковалентными связями. При этом связанные атомы могут различаться по величине электроотрицательности. Величины электроотрицательностей в значительной степени определяют такие важнейшие характеристики связи, как полярность и прочность (энергия образования). В свою очередь, полярность и прочность связей в молекуле, в значительной степени, определяют возможности молекулы вступать в те или иные химические реакции.

Электроотрицательность атома углерода зависит от состояния его гибридизации. Это связано с долей s -орбитали в гибридной орбитали: она меньше у sp 3 - и больше у sp 2 - и sp -гибридных атомов.

Все составляющие молекулу атомы находятся во взаимосвязи и испытывают взаимное влияние. Это влияние передается, в основном, через систему ковалентных связей, с помощью так называемых электронных эффектов.

Электронными эффектами называют смещение электронной плотности в молекуле под влиянием заместителей.

Атомы, связанные полярной связью, несут частичные заряды, обозначаемые греческой буквой "дельта" (d). Атом, "оттягивающий" электронную плотность s-связи в свою сторону, приобретает отрицательный заряд d-. При рассмотрении пары атомов, связанных ковалентной связью, более электроотрицательный атом называют электроноакцептором. Его партнер по s-связи соответственно будет иметь равный по величине дефицит электронной плотности, т.е. частичный положительный заряд d+, будет называться электронодонором.

Смещение электронной плотности по цепи s-связей называется индуктивным эффектом и обозначается I.

Индуктивный эффект передается по цепи с затуханием. Направление смещения электронной плотности всех s -связей обозначается прямыми стрелками.

В зависимости от того, удаляется ли электронная плотность от рассматриваемого атома углерода или приближается к нему, индуктивный эффект называют отрицательным (-I ) или положительным (+I). Знак и величина индуктивного эффекта определяются различиями в электроотрицательности между рассматриваемым атомом углерода и группой, его вызывающей.

Электроноакцепторные заместители, т.е. атом или группа атомов, смещающие электронную плотность s-связи от атома углерода к себе, проявляют отрицательный индуктивный эффект (-I -эффект).

Электродонорные заместители, т.е. атом или группа атомов, смещающие электронную плотность к атому углерода от себя, проявляют положительный индуктивный эффект (+I-эффект).

I-эффект проявляют алифатические углеводородные радикалы, т.е. алкильные радикалы (метил, этил и т.д.). Большинство функциональных групп проявляют -I -эффект: галогены, аминогруппа, гидроксильная, карбонильная, карбоксильная группы.

Индуктивный эффект проявляется и в случае, когда связанные атомы углерода различны по состоянию гибридизации.

При передаче индуктивного эффекта метальной группы на двойную связь в первую очередь ее влияние испытывает подвижная p-связь.

Влияние заместителя на распределение электронной плотности, передаваемое по p-связям, называют мезомерным эффектом (М). Мезомерный эффект также может быть отрицательным и положительным. В структурных формулах его изображают изогнутой стрелкой, начинающейся у центра электронной плотности и завершающейся в том месте, куда смещается электронная плотность.

Наличие электронных эффектов ведет к перераспределению электронной плотности в молекуле и появлению частичных зарядов на отдельных атомах. Это определяет реакционную способность молекулы.

Все органические соединения в зависимости от природы углеродного скелета можно разделить на ациклические и циклические.

Ациклические (нециклические, цепные) соединения называют также жирными или алифатическими. Эти названия связаны с тем, что одними из первых хорошо изученных соединений такого типа были природные жиры. Среди ациклических соединений различают предельные, например:

CH 3 - CH 3

этан

CH 3

CH 3

CH 3

изобутан

и непредельные, например:

CH 2 = CH 2

CH ≡ CH

CH 2 =

CH 2

CH 3

этилен

ацетилен

изопрен

Среди циклических соединений обычно выделяют карбо-циклические, молекулы которых содержат кольца из углеродных атомов, и гетероциклические, кольца которых содержат кроме углерода атомы других элементов (кислорода, серы, азота и др.).

Карбоциклические соединения подразделяются на алициклические (предельные и непредельные), похожие по свойствам на алифатические, и ароматические, которые содержат бензольные кольца.

Рассмотренную классификацию органических соединений можно представить в виде краткой схемы


В состав многих органических соединений кроме углерода и водорода входят и другие элементы, причем в виде функциональных групп - групп атомов, определяющих химические свойства данного класса соединений. Наличие этих групп позволяет подразделить указанные выше типы органических соединений на классы и облегчить их изучение. Некоторые наиболее характерные функциональные группы и соответствующие им классы соединений приведены в таблице

Функциональная
группа

Название
группы

Классы
соединений

пример

Гидроксид

Карбонил

Спирты

C 2 H 5 OH

Этиловый спирт

Фенолы

Альдегиды

фенол

уксусный альдегид

кетоны

ацетон

Карбоксил

Карбоновые
кислоты

уксусная кислота

NO 2

Нитрогруппа

Нитросоединения

CH 3 NO 2

Нитрометпн

NH 2

Аминогруппа

Первичные амины

анилин

Амидогруппа

Амиды кислот

амид уксусной кислоты

F, -Cl, -Br, -I

Галогены

Галогенопроиз-водные

CH 3 Cl

Хлористый метил

В состав молекул органических соединений могут входить две или более одинаковых или различных функциональных групп, например:

CH 2 OH

NH 2 CH 2 - COOH

аминоуксусная кислота

CHOH

CH 2 OH

глицерин

Органические соединенияСтраница 9

Большой медицинский словарь Атлас анатомии человека Психологическая энциклопедия Словарь по аналитической психологии Толковый словарь психиатрических терминов Словарь нейролингвистического программирования Словарь медицинских препаратов Биологическая энциклопедия Словарь микробиологии Сельско-хозяйственный энциклопедический словарь Ветеринарный энциклопедический словарь Анатомия и морфология растений Жизнь и ловля пресноводных рыб Животные России. Справочник Породы сельскохозяйственных животных. Справочник Термины и определения, используемые в селекции, генетике животных Философская энциклопедия История философии Китайская философия. Энциклопедический словарь. Словарь терминов логики Термины гендерных исследований Библейская энциклопедия Брокгауза Краткий церковнославянский словарь Ислам. Энциклопедический словарь. Буддизм Религиозные термины Словарь восточных терминов Музыкальная энциклопедия Русский рок. Малая энциклопедия Большая энциклопедия кулинарного искусства Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона Современная энциклопедия Большой Энциклопедический словарь Химическая энциклопедия Естествознание. Энциклопедический словарь Астрономический словарь Экология человека Правила русского правописания Словарь управления Грамматологический словарь Толковый словарь Ожегова Современный толковый словарь русского языка Ефремовой Толковый словарь Дмитриева Стилистический энциклопедический словарь русского языка Русский орфографический словарь Пятиязычный словарь лингвистических терминов Этимологический словарь русского языка Макса Фасмера Этимологический словарь русского языка Семенова Этимологический словарь русского языка Словарь древнерусского языка (XI-XIV вв.) Большой толково-фразеологический словарь Михельсона (оригинальная орфография) Учебный фразеологический словарь Словарь крылатых слов и выражений Большой словарь русских поговорок Толковый переводоведческий словарь Живая речь. Словарь разговорных выражений Русское словесное ударение Словарь русской идиоматики Словарь антонимов Словарь литературных терминов Поэтический словарь Энциклопедия Булгакова Шекспировская энциклопедия Словарь книжников и книжности Древней Руси Собственное имя в русской поэзии XX века: словарь личных имён Античные писатели Энциклопедия культурологии Словарь средневековой культуры Постмодернизм. Словарь терминов Большой филателистический словарь Словарь ГОСТированной лексики Контрразведывательный словарь Вооруженные силы зарубежных стран Энциклопедия моды и одежды Коммерческая электроэнергетика. Словарь-справочник Большой энциклопедический политехнический словарь Научно-технический энциклопедический словарь Словарь металлургических терминов Морской словарь Технический железнодорожный словарь Энциклопедия средневекового оружия Географическая энциклопедия Демографический энциклопедический словарь Города России Санкт-Петербург (энциклопедия) Вся Япония Архитектурный словарь Геологические термины Словарь золотого промысла Российской Империи Экологический словарь Словарь мер Юридический словарь Экономический словарь Энциклопедический словарь экономики и права Большой юридический словарь Административное право. Словарь-справочник Словарь депозитарных терминов Дипломатический словарь Словарь личных имен Исторический словарь 1000 биографий Энциклопедический словарь псевдонимов Энциклопедия русского быта XIX века Все монархи мира Энциклопедия битв мировой истории Античный мир. Словарь-справочник Энциклопедия Третьего рейха

По донорно-акцепторному механизму ковалентная связь возникает за счет взаимодействия двухэлектронного облака одного атома или иона и свободной орбитали другого. Рассмотрим образование такой связи на примером иона аммония NH 4 + .

Молекула аммиака NH3 имеет заполненную атомную орбиталь (2s2), является донором и предоставляет ее иону водорода у которого орбиталь 1s пустая, при этом H+ будет акцептором. Все четыре связи в ионе аммония являются равноценными.

Соединения, образованные ковалентной связью по донорно-акцепторному механизму, называют комплексными или координационными.

        1. Комплексные (координационные) соединения

Координационные соединения (КС)– химические соединения, состав которых не укладывается в рамки представлений об образовании химических связей за счет неспаренных электронов. Ковалентная связь в КС образуются по донорно-акцепторному механизму. Так, при взаимодействии цианистых солей железа и калия образуется КС - ферроцианид калия:

Fe(CN) 2 + 4KCN = K 4

КС широко распространены, чаще всего они образуются в растворах и расплавах, но могут существовать как в кристаллическом так и в газообразном состоянии. Переход вещества из одного физического состояния в другое может приводить к изменению состава и строения КС, к распаду одних комплексных группировок и образованию новых.

Ядро КС (комплекса) составляет центральный атом - комплексообразователь (в приведённом примере Fe) является акцептором, и координированные, т. е. связанные с ним, молекулы или ионы, называемыелигандами (в данном случае кислотный остаток CN -) – доноры. Лиганды составляют внутреннюю сферу комплекса. Бывают КС, состоящие только из центрального атома и лигандов, напримеркарбонилы металловTi (CO) 7 , Cr (CO) 6 , Fe (CO) 5 и др. Если в состав комплекса входят ионы, не связанные непосредственно с центральным атомом, то их выделяют во внешнюю сферу комплекса. Внешнесферными могут быть и катионы, например К + в K 4 , и анионы, например SO 4 2- в [Сu(NH 3) 4 ]SO 4 . При записи формулы КС внешнесферные ионы выносятся за квадратные скобки. Комплексная группировка, несущая избыточный положительный электрический заряд, как в 2+ , или отрицательный, как в 4- , называется комплексным ионом. В растворах КС с внешнесферными ионами практически нацело диссоциированы по схеме, например:

K 2 = 2K + + 2-

SO 4 = 2+ +SO 4 2- .

Комплексные ионы тоже могут диссоциировать в растворе. Например:

2- ⇔ Co 2+ +4Cl - .

Устойчивость К. с. в растворе определяется константой диссоциации (константа нестойкости) К его комплексного иона:

При записи константы диссоциации в квадратные скобки берут равновесные концентрации ионов. Константа нестойкости характеризует устойчивость комплекса в растворе, зависящую от энергии связи между центральным атомом и лигандом, чем выше константа нестойкости, тем ниже устойчивость комплексного иона. Различают также кинетическую устойчивость, или инертность, комплексной группировки - неспособность комплексного иона быстро обменивать внутрисферные ионы или молекулы на другие адденды. Например, 3+ и [Сr(H 2 O) 6 ] 3+ имеют почти одинаковые энергии связи Me - H 2 O (116 и 122ккал/моль ), но первый комплекс обменивает лиганды быстро, а второй (инертный) - медленно.

Число ионов или молекул, непосредственно связанных с центральным атомом, называется его координационным числом (К. ч.). Например, в КС K 4 , Ti(CO) 7 и [Сu(NH 3) 4 ]SO 4 . К. ч. центральных атомов равны, соответственно, 6, 7 и 4. К. ч. у различных комплексообразователей различны. Их значения меняются в зависимости от размеров и химической природы центральных атомов и лигандов. В настоящее время известны К. ч. от 1 до 12, однако чаще всего 4 и 6.

Составные части КС чрезвычайно разнообразны. В качестве центральных атомов-комплексообразователей чаще всего выступают атомы переходных элементов (Ti, V, Cr, Mn, Fe, Со, Ni, Си, Zn, Zr, Nb, Mo, Fe, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, lr, Pt, Au, Hg, редкоземельные элементы, элементы группы актиноидов), а также некоторые неметаллы, например В, Р, Si. Лигандами могут быть анионы кислот (F - , Cl - , Br - , I - , CN - , NO -2 , SO 4 2- , PO43- и др.) и самые разнообразные нейтральные органические и неорганические молекулы и радикалы, содержащие атомы О, N, Р, S, Se, С.

КС с анионами кислот во внутренней сфере (ацидокомплексы) - наиболее типичные представители неорганических комплексов. Самым распространённым лигандом является Вода. При растворении простых солей в воде образуются аквокомплексы, например, по схеме CoCl 2 + 6H 2 O= 2+ + 2Cl. Кристаллические аквокомплексы называются кристаллогидратами.

Ковалентная связь - межатомная связь, обусловленная коллективизацией внешних электронов взаимодействующих атомов. Для ковалентной связи характерны насыщенность и направленность. Насыщенность проявляется в том, что в ковалентную связь вступает такое число атомов, чтобы обеспечить полностью заполненную ns 2 np 6 электронную структуру. Направленность связи заключается в усилении плотности электронного облака в направлении, связывающем центры атомов;

Простая связь , ординарная связь, одинарная связь - химическая ковалентная связь, осуществляемая парой электронов (с антипараллельной ориентацией спинов), движущихся в поле 2 атомных ядер. Например, в молекулах H2, Cl2 и HCl имеется по одной ковалентной связи, образованной взаимодействием неспаренных электронов (находившихся на атомных орбиталях 1s-1s, 3р-3р и 1s-3р соответственно). Поскольку эти молекулы двухатомны, химические связи в них двухцентровые. Для указанных молекул можно написать следующие электронные и структурные формулы: Н: Н и Н-Н, Cl: Cl и Cl-Cl, H: Cl и Н-Cl [две точки и валентный штрих (чёрточка) обозначают пару электронов, общую для обоих соединившихся атомов].

Аналогичное описание справедливо для молекул всех насыщенных соединений, у которых число пар валентных электронов равно числу возможных двухцентровых взаимодействий. В таких соединениях все химические связи являются простыми связями (с кратностью, равной единице). Пара электронов простой связи в равной степени может иметь и донорно-акцепторное происхождение. Поэтому, например, изоэлектронные молекула CH4 и ионы и могут быть описаны однотипной структурной формулой

(где Х = В-, С и N+ соответственно).

В химических соединениях, в которых среднее число электронов, связывающих каждую пару атомных ядер, не равно двум, могут возникнуть химические связи самой различной кратности - как меньше единицы (соединения с дефицитом электронов), так и больше единицы (соединения с кратными связями). В этих случаях описание электронного строения молекул обычно требует привлечения наиболее общего метода квантовой химии - молекулярных орбиталей метода.

Связи σ и π. Одинарные и кратные связи

Два атома между собой могут образовывать и кратные связи, то есть двойные и тройные. При этом составляющая, образующаяся первой, всегда будет σ-связью (обладает наибольшей прочностью и определяет геометрическую форму молекулы).Вторая и третья составляющие называются π-связями, они образуются при боковом перекрывании любых орбиталей, кроме s -орбиталей:

Например, 2p -орбитали двух атомов углерода могут сформировать между собой одинарную, двойную и тройную связи. В первом случае образуется остов молекулы этана C 2 H 6 .

При двойном связывании атомов углерода первые 2p -орбитали создают σ-связь, а вторые - π-связь; в этом случае образуется остов молекулы этилена C 2 H 4 .

При тройном связывании (одна σ-связь, две π-связи) образуется остов молекулы ацетилена C 2 H 2 .

Часто именно этим объясняется химическая инертность веществ - таких, как азот N 2 (:N≡N:) и диоксид углерода CO 2 (O=C=O).

Примеры частиц с кратными связями - это также молекулы SO 3 , SO 2 , NO 2 и анионы CO 3 2− , SO 4 2− , SO 3 2−

Длина химической связи

При образовании химической связи всегда происходит сближение атомов - расстояние между ними меньше, чем сумма радиусов изолированных атомов:

r (A−B) < r (A) + r (B)

Радиус атома водорода составляет 53 пм, атома фтора − 71 пм, а расстояние между ядрами атомов в молекуле HF равно 92 пм:


Межъядерное расстояние между химически связанными атомами называется длиной химической связи.

Во многих случаях длину связи между атомами в молекуле вещества можно предсказать, зная расстояния между этими атомами в других химических веществах. Длина связи между атомами углерода в алмазе равна 154 пм, между атомами галогена в молекуле хлора - 199 пм. Полусумма расстояний между атомами углерода и хлора, рассчитанная из этих данных, составляет 177 пм, что совпадает с экспериментально измеренной длиной связи в молекуле CCl 4 . В то же время это выполняется не всегда. Например, расстояние между атомами водорода и брома в двухатомных молекулах составляет 74 и 228 пм, соответственно. Среднее арифметическое этих чисел составляет 151 пм, однако реальное расстояние между атомами в молекуле бромоводорода равно 141 пм, то есть заметно меньше.

Расстояние между атомами существенно уменьшается при образовании кратных связей. Чем выше кратность связи, тем короче межатомное расстояние.

Длины некоторых простых и кратных связей

Энергия ковалентной связи

Химическое соединение образуется из отдельных атомов только в том случае, если это энергетически выгодно. Если силы притяжения преобладают над силами отталкивания, потенциальная энергия взаимодействующих атомов понижается, в противном случае − повышается. На некотором расстоянии (равном длине связи r 0) эта энергия минимальна.

Для многоатомных молекул эта величина является условной и отвечает энергии такого процесса, при котором данная химическая связь исчезает, а все остальные остаются без изменения. При наличии нескольких одинаковых связей (например, для молекулы воды, содержащей две связи кислород−водород) их энергию можно рассчитать, используя закон Гесса .

Чем выше энергия химической связи, тем прочнее связь . Связь считается прочной, или сильной, если ее энергия превышает 500 кДж/моль (например, 942 кДж/моль для N 2), слабой - если ее энергия меньше 100 кДж/моль (например, 69 кДж/моль для NO 2). Если при взаимодействии атомов выделяется энергия менее 15 кДж/моль, то считают, что химическая связь не образуется, а наблюдается межмолекулярное взаимодействие (например, 2 кДж/моль для Xe 2). Прочность связи обычно уменьшается с увеличением ее длины.

Одинарная связь всегда слабее, чем кратные связи - двойная и тройная - между теми же атомами.

Тема: Органические соединения.

План:

    Предпосылки создания предмета органическая химия.

    История органической химии.

    Основные методы органической химии.

    Теория Бутлерова. Основные положения. Свойства углерода, определяющие особенности строения.

    Гомологические ряды.

    Простые и кратные связи в органических соединениях. Предельные и непредельные углеводороды.

    Изомерия органических соединений.

    Взаимное влияние атомов.

    Классификация органических соединений.

Органические вещества известны человечеству с древнейших времен. Применяя сравнительно простые способы переработки растений, люди издавна умели получать сахар, душистые и лекарственные вещества, красители, мыло и т.д. Например, сахар выделяли из тростника, краситель синего цвета «индиго» – из восточно-азиатских растений, краситель пурпурного цвета «античный пурпур» – из морских улиток, а ализарин – из корней морены. Люди умели не только выделять органические вещества, но и подвергали их различным превращениям. Например, вино получали из виноградного сока, а уксус – из перебродившего вина.

Поиски новых превращений химических веществ оказались весьма плодотворными в средние века, когда интенсивно развивалась «алхимия». Не зная состава доступных в то время органических веществ, алхимики чисто эмпирически получили из них многие полезные вещества.

После фундаментальных работ М. Ломоносова и А. Лавуазье, сформулировавших закон сохранения веса веществ, химики научились определять состав органических веществ и выражать его в виде эмпирической формулы, отражающей минимальное целочисленное отношение атомов в молекуле, а затем и в видемолекулярной формулы, отражающей число атомов каждого элемента, входящего в состав молекулы. Эти работы открыли возможность развития органической химии как науки. В конце XVIII – начале XIX веков были открыты важнейшие углеводороды и установлены их молекулярные формулы. Метан CH 4 был открыт А. Вольта в 1778г. при исследовании болотного газа. Этилен C 2 H 4 впервые был получен в 1795 г. действием концентрированной серной кислоты на этиловый спирт. Бензол C 6 H 6 был выделен М. Фарадеем в 1825 г. из конденсата светильного газа. Ацетилен C 2 H 2 был открыт Э. Дэви в 1836 г., а в 1862 г. получен Ф. Вёлером действием воды на карбид кальция.

Наличие углерода в каждом органическом веществе позволило шведскому химику И. Берцелиусу определить “органическую химию как химию соединений углерода” (1806 г.).

Углерод выделяется среди всех элементов тем, что его атомы могут связываться друг с другом в длинные цепи или циклы. Именно это свойство позволяет углероду образовывать миллионы соединений, изучению которых посвящена целая область - органическая химия.

Органическая химия - это химия соединений углерода. Со­гласно другому широко используемому определению, органиче­ская химия - это химия углеводородов и их производных.

К настоящему времени число известных орг. соед. превышает 10 млн. и увеличивается каждый год на 250-300 тыс. Многообразие орг. соед. определяется уникальной способностью атомов углерода соединяться друг с другом простыми и кратными связями, образовывать соед. с практически неогранич. числом атомов, связанных в цепи, циклы, бициклы, трициклы, полициклы, каркасы и др., образовывать прочные связи почти со всеми элементами периодич. системы, а также явлением изомерии- существованием разных по св-вам в-в, обладающих одним и тем же составом и мол. массой.

Несколько причин обусловили проявление углеродом выше отмеченных свойств. Доказано, что энергия связи (прочность свя­зи) С-С сопоставима с прочностью связей С-О. Связь Si-O намного прочнее связи Si-Si. Углерод обладает возможностью проявлять не одну, а це­лых три разновидности гибридизации орбиталей: в случаеsp 3 -гибридизации образуются четыре гибридных орбитали, имеющие тетраэдрическую ориентацию; с их помощью образуются простые ковалентные связи: в случае sp 2 -гибридизации образуются три гибридные орбитали, ориентированные в одной плоскости, и в комбинации с негибридной орбиталью они образуют двойные кратные связи; наконец, с помощьюsp-гибридных орбиталей, имеющих линейную ориентацию, и негибридных орбиталей меж­ду атомами углерода возникают тройные кратные связи. Сейчас хорошо известно, что атомы углерода способны образовывать простые, двойные и тройные связи не только друг с другом, нотакже и с другими элементами. Таким образом, современная тео­рия строения молекул объясняет и огромное число органи­ческих соединений, и зависимость свойств этих соединений от их химического строения. Она же полностью подтверждает основ­ные принципы теории химического строения, разработанные выдающимся русским ученым А.М.Бутлеровым и изложенные им в докладе "О теории химического строения" на международном съезде естествоиспытателей в 1861 г.

В XX веке дальнейшее развитие получили теория строения и концепции реакционной способности органических соединений. В работах Г. Льюиса, Р. Робинсона и К. Ингольда были развиты электронные представления, объяснившие природу связей в органических соединениях. Создание квантовой механики, а затем и квантовой химии послужило началом развития теории молекулярных орбиталей, открывшей новую страницу в понимании природы химического связывания.

Работы Э. Хюккеля, К. Фукуи, Р. Вудворда, М. Дьюара и Р. Гофмана открыли этап широкого применения орбитальных представлений в органической химии. Среди этих представлений особо следует отметить концепцию граничных орбиталей, которая связывает свойства и поведение органических молекул с их граничными электронными уровнями. В последние годы орбитальные представления получили мощную поддержку со стороны ряда физических методов. По данным фотоэлектронной спектроскопии, электронной трансмиссионной спектроскопии, спектроскопии электронного парамагнитного резонанса оказалось возможным оценивать энергии и симметрию электронных уровней молекул, а тем самым адекватность различных методов квантовохимических расчетов.

Возможности органической химии в настоящее время практически не ограничены как в области синтеза сложнейших природных структур, так и в области расчета и моделирования свойств органических молекул и макромолекул. Реализация этих возможностей требует, однако, безусловного владения основами органической химии.

С середины 20 в. происходят коренные изменения в методах химических исследований, в которые вовлекается широкий арсенал средств физики и математики. Классические задачи Х. - установление состава и строения веществ - всё успешнее решаются с использованием новейших физических методов.

Основным методом О.х. является синтез. Развитие методов синтеза в первую очередь способствовало установлению строения самых сложных соединений. Идеальным завершением процесса определения структуры молекул орг. соед. является полный синтез (тотальный синтез), т.е. получение с помощью совершенно однозначных хим. методов соединения, структура к-рого была предложена на основании изучения др. методами.

Неотъемлемой чертой теоретической и экспериментальной Х. стало применение новейшей быстродействующей вычислительной техники для квантовохимических расчётов, выявления кинетических закономерностей, обработки спектроскопических данных, расчёта структуры и свойств сложных молекул.

Из числа чисто химических методов, разработанных в 20 в., следует отметить микрохимический анализ, позволяющий производить аналитические операции с количествами веществ, в сотни раз меньшими, чем в методе обычного химического анализа. Большое значение приобрела хроматография, служащая не только для аналитических целей, но и для разделения весьма близких по химическим свойствам веществ в лабораторных и промышленных масштабах. Важную роль играет физико-химический анализ (ФХА) как один из методов определения химического состава и характера взаимодействия компонентов в растворах, расплавах и др. системах. В ФХА широко используются графические методы (диаграммы состояния и диаграммы состав - свойство). Классификация последних позволила уточнить понятие химического индивида, состав которого может быть постоянным и переменным (см. Дальтониды и бертоллиды). Предсказанный Курнаковым класс нестехиометрических соединений приобрёл большое значение в материаловедении и новой области - Х. твёрдого тела.

Люминесцентный анализ, метод меченых атомов (см. Изотопные индикаторы), рентгеновский структурный анализ, электронография, полярография и др. физико-химические методы анализа находят широкое применение в аналитической Х. Использование радиохимических методик позволяет обнаружить присутствие всего нескольких атомов радиоактивного изотопа (например, при синтезе трансурановых элементов).

Для установления строения химических соединений важное значение имеет молекулярная спектроскопия (см. Молекулярные спектры), с помощью которой определяются расстояния между атомами, симметрия, наличие функциональных групп и др. характеристики молекулы, а также изучается механизм химических реакций. Электронная энергетическая структура атомов и молекул, величина эффективных зарядов выясняются посредством эмиссионной и абсорбционной рентгеновской спектроскопии. Геометрия молекул исследуется методами рентгеновского структурного анализа.

Обнаружение взаимодействия между электронами и ядрами атомов (обусловливающего сверхтонкую структуру их спектров), а также между внешними и внутренними электронами позволило создать такие методы установления строения молекул, как ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР), ядерный квадрупольный резонанс (ЯКР), гамма-резонансная спектроскопия (см. Мёссбауэра эффект). Особую роль по широте применения приобрела ЯМР-спектроскопия. Для выяснения пространственных характеристик молекул возрастающее значение приобретают оптические методы: спектрополяриметрия, круговой дихроизм, дисперсия оптического вращения. Разрушение молекул в вакууме под влиянием электронного удара с идентификацией осколков применяется для установления их строения методом масс-спектроскопии. Арсенал кинетических методов пополнился средствами, связанными с использованием ЭПР- и ЯМР-спектроскопии (химическая поляризация ядер), метода импульсного фотолиза и радиолиза. Это позволяет изучать сверхбыстрые процессы, протекающие за время 10-9 сек и меньше.

Для исследования космических объектов с успехом применяются методы спектрального анализа в различных диапазонах электромагнитного спектра. В частности, методами радиоастрономии в межзвёздном пространстве были обнаружены облака химических соединений, включающие такие относительно сложные молекулы, как формальдегид, тиомочевину, метиламин, цианацетилен и др. С развитием космических полётов методы экспериментальной Х. стали применяться на внеземных объектах (Луна, Венера, Марс).

Решающая роль в создании теории строения органических соединений принадлежит великому русскому ученому Александру Михайловичу Бутлерову. 19 сентября 1861 года на 36-м съезде немецких естествоиспытателей А.М.Бутлеров обнародовал ее в докладе "О химическом строении вещества".

Основные положения теории химического строения А.М.Бутлерова можно свести к следующему:

    1 . Все атомы в молекуле органического соединения связаны друг с другом в определенной последовательности в соответствии с их валентностью. Изменение последовательности расположения атомов приводит к образованию нового вещества с новыми свойствами. Например, составу вещества С 2 Н 6 О отвечают два разных соединения: диметиловый эфир (СН 3 -О-СН 3) и этиловый спирт (С 2 Н 5 ОН).

2 . Свойства веществ зависят от их химического строения. Химическое строение - это определенный порядок в чередовании атомов в молекуле, во взаимодействии и взаимном влиянии атомов друг на друга - как соседних, так и через другие атомы. В результате каждое вещество имеет свои особые физические и химические свойства. Например, диметиловый эфир - это газ без запаха, нерастворимый в воде, t°пл. = -138°C, t°кип. = 23,6°C; этиловый спирт - жидкость с запахом, растворимая в воде, t°пл. = -114,5°C, t°кип. = 78,3°C. Данное положение теории строения органических веществ объяснило явление изомерии, широко распространенное в органической химии. Приведенная пара соединений - диметиловый эфир и этиловый спирт - один из примеров, иллюстрирующих явление изомерии.

    3 . Изучение свойств веществ позволяет определить их химическое строение, а химическое строение веществ определяет их физические и химические свойства.

    4. Атомы углерода способны соединятся между собой, образовывая углеродные цепи различного вида. Они могут быть как открытыми, так и замкнутыми (циклическими), как прямыми, так и разветвленными. В зависимости от числа связей, затрачиваемых атомами углерода на соединение друг с другом, цепи могут быть насыщенными (с одинарными связями) или ненасыщенными (с двойными и тройными связями).

5. Каждое органическое соединение имеет одну определенную формулу строения или структурную формулу, которую строят, основываясь на положении о четырехвалентном углероде и способности его атомов образовывать цепи и циклы. Строение молекулы как реального объекта можно изучить экспериментально химическими и физическими методами.

А.М.Бутлеров не ограничился теоретическими объяснениями своей теории строения органических соединений. Он провел ряд экспериментов, подтвердив предсказания теории получением изобутана, трет. бутилового спирта и т.д. Это дало возможность А.М.Бутлерову заявить в 1864 году, что имеющиеся факты позволяют ручаться за возможность синтетического получения любого органического вещества.

В дальнейшем развитии и обосновании теории строения органических соединений большую роль сыграли последователи Бутлерова - В.В.Марковников, Е.Е.Вагнер, Н.Д.Зелинский, А.Н.Несмеянов и др.

Среди многообразия органических соединений можно выделить группы веществ, которые сходны по химическим свойствам и отличаются друг от друга на группу СН 2 .

Соединения, сходные по химическим свойствам, состав которых отличается друг от друга на группу СН 2 , называются гомологами. Гомологи, располо­женные в порядке возрастания их относительной молекулярной массы, образуют гомологический ряд. Группы СН 2 называется гомологической разностью.

Примером гомологического ряда может служить ряд предельных углеводородов (алканов). Простейший его представитель - метан СН 4 . Гомологами метана являются: этан С 2 Н 6 , пропан С 3 Н 8 , бутан С 4 H 10 , пентан С 5 Н 12 , гексан С 6 Н 14 , гептан С 7 Н 16 и т. д. Формула любого последующего гомолога может быть получена прибавлением к формуле предыдущего углеводорода гомологической разности.

Состав молекул всех членов гомологического ряда может быть выражен одной общей формулой. Для рассмотренного гомологического ряда предельных углеводородов такой формулой будет С n Н 2 n +2 , гдеn- число атомов углерода.

Гомологические ряды могут быть построены для всех классов орга­нических соединений. Зная свойства одного из членов гомологического ряда, можно сделать выводы о свойствах других представителей того же ряда. Это обусловливает важность понятия гомологии при изучении органической химии.

Органические вещества, содержащие только простые связи между атомами углерода, называют предельными. Предельным углеводородам соответствует общая формула С n H 2n+2 .

На один атом углерода в их молекулах приходится меньшее число атомов водорода, чем у предельных соединений.

Кратные связи и функциональные группы определяют класс соединения. Вещества, обладающие одинаковыми функциональными группами и (или) одинаковым набором кратных связей, имеют сходные свойства и относятся к одному классу. Кратные связи и функциональные группы определяюткласс соединения. Вещества, содержащие кратные связи, образуют классы близких по свойствам соединений. Соединения с двойной связью называюталкенами , с тройной -алкинами . Соединения, не содержащие ни кратных связей, ни функциональных групп, также составляют отдельный класс органических веществ. Это -предельные углеводороды , илиалканы .

Простейшим представителем и родоначальником предельных углеводородов является метан СН 4 . Строение молекулы метана можно выразить структурной (I) или электронной (II) формулой:

В предельных углеводородах атомы углерода находятся в первом валентном состоянии (sp 3 -гибpидизaция). В этом случае, .как известно, все четыре гибридные орбитали в пространстве составляют геометрическую фигуру - тетраэдр (углы между осями связей С-Н равны 109° 28"). Пространственное расположение атомов в молекуле метана можно показать с помощью тетраэдрических и шаростержневых моделей. Для этого наиболее удобны объемные модели Бриглеба, которые более наглядно отражают относительные размеры атомов в молекуле. Эти модели изготовлены в соответствии с действительным соотношением радиусов атомов (в масштабе 0,05 нм = 1 см).

Гомологический ряд предельных углеводородов (алканов) нормального (неразветвленного) строения и их одновалентные радикалы

Углеводород

(алкан)

возможных

изомеров у алкана

Радикал (алкил)

Название

Название

(декил)

Гомологические ряды характерны для всех классов органических соединений. Они являются прекрасным подтверждением основного закона природы - перехода количественных изменений в качественные.

Встречающиеся в органических соединениях кратные связи (двойные или тройные): образуются при обобществлении двумя атомами более чем одной пары электронов:

Н 2 С: : СН 2 ; R 2 С: : О; HС: : : CH; RС: : : N и т.д.

Кратные связи являются сочетанием σ- и π-связей.

Двойная связь состоит из одной σ- и одной π-связей и осуществляется 4-мя общими электронами.

Тройная связь является комбинацией из одной σ- и двух π-связей и включает в себя шесть электронов.


    Число электронных пар, участвующих в образовании ковалентной связи называется порядком связи .

Таким образом, порядок простой связи равен 1 , двойной – 2 , тройной – 3 . В случае сопряженных (делокализованных) связей порядок связи отличается от этих целочисленных значений.

Современная органическая химия располагает сведениями о 10 млн органических соединений, количество которых ежегодно увеличивается на 250–300 тыс. наименований. Такое огромное количество органических веществ относится к сравнительно небольшому числу классов органических соединений, содержащих те или иные функциональные группы. Наличие этих функциональных групп и предопределяет характерные химические свойства данного класса соединений.

Способность атомов углерода к образованию четырех ковалентных связей, в том числе и с другими атомами углерода, открывает возможность существования нескольких соединений одного элементного состава - изомеров.

Все изомеры делят на два больших класса - структурные изомеры и пространственные изомеры.

Структурными называют изомеры, отвечающие различным структурным формулам органических соединений (с разным порядком соединения атомов).

Пространственные изомеры имеют одинаковые заместители у каждого атома углерода и отличаются лишь их взаимным расположением в пространстве.

Структурные изомеры. В соответствии с приведенной выше классификацией органических соединений по типам среди структурных изомеров выделяют три группы:

1) соединения, содержащие различные функциональные группы и относящиеся к различным классам органических соединений, например:

CH 3 -CH 2 -NO 2 HOOC-CH 2 -NH 2

нитроэтан амииоуксусная кислота (глицин)

2) соединения, отличающиеся углеродными скелетами:

бутан 2-метнлпропан (изобутан)

3) соединения, отличающиеся положением заместителя или кратной связи в молекуле:

СН 3 -СН=СН-СН 3 СН 3 -СН 2 -СН=СН 2

бутен-2 бутен-1

пропанол-2 пропанол-1

Пространственные изомеры (стереоизомеры). Стереоизомеры можно разделить на два типа: геометрические изомеры оптические изомеры.

Геометрическая изомерия характерна для соединений, содержащих двойную связь или цикл. В таких молекулах часто возможно провести условную плоскость таким образом, что заместители у различных атомов углерода могут оказаться по одну сторону (цис-) или по разные стороны (транс-) от этой плоскости.

Если изменение ориентации этих заместителей относительно плоскости возможно только за счет разрыва одной из химических связей, то говорят о наличии геометрических изомеров. Геометрические изомеры отличаются своими физическими и химическими свойствами.


транс -1,2- цис-1,2- цис-бутен-2 транс-6утен-2 диметил- диметил- циклопентан циклопентан

Оптическими изомерами называют молекулы, зеркальные изображения которых не совместимы друг с другом.

Таким свойством обладают молекулы, имеющие асимметрический центр - атом углерода, связанный с четырьмя различными заместителями. Например, в виде двух оптических изомеров существует молекула молочной кислоты СН 3 -СН(ОН)- СООН, содержащая один асимметрический центр:

Молекула органического соединения представляет собой со­вокупность атомов, связанных в определенном порядке, как пра­вило, ковалентными связями. При этом связанные атомы могут различаться по величине электроотрицательности. Величины электроотрицательностей в значительной степени определяют та­кие важнейшие характеристики связи, как полярность и проч­ность (энергия образования). В свою очередь, полярность и прочность связей в молекуле, в значительной степени, определяют возможности молекулы вступать в те или иные химические реакции.

Электроотрицательность атома углерода зависит от состояния его гибридизации. Это связано с долей s-орбитали в гибридной орбитали: она меньше уsp 3 - и больше уsp 2 - иsp-гибридных ато­мов.

Все составляющие молекулу атомы находятся во взаимосвязи и испытывают взаимное влияние. Это влияние передается, в основном, через систему ковалентных связей, с помощью так на­зываемых электронных эффектов.

Электронными эффектами называют смещение электронной плотности в молекуле под влиянием заместителей.

Атомы, связанные полярной связью, несут частичные заряды, обозначаемые греческой буквой "дельта" (d). Атом, "оттягивающий" электронную плотность s-связи в свою сторону, приобретает отрицательный заряд d-. При рассмотрении пары атомов, связанных ковалентной связью, более электроотрица­тельный атом называют электроноакцептором. Его партнер по s-связи соответственно будет иметь равный по величине дефицит электронной плотности, т.е. частичный положительный заряд d+, будет называться электронодонором.

Смещение электронной плотности по цепи s-связей называет­ся индуктивным эффектом и обозначается I.

Индуктивный эффект передается по цепи с затуханием. На­правление смещения электронной плотности всех s -связей обо­значается прямыми стрелками.