Отрезок луч прямая ломаная. Пробелы в геометрии (линия, угол, луч, отрезок, прямая, кривая, замкнутая линии)


Точка — это абстрактный объект, который не имеет измерительных характеристик: ни высоты, ни длины, ни радиуса. В рамках задачи важно только его местоположение

Точка обозначается цифрой или заглавной (большой) латинской буквой. Несколько точек — разными цифрами или разными буквами, чтобы их можно было различать

точка A, точка B, точка C

A B C

точка 1, точка 2, точка 3

1 2 3

Можно нарисовать на листке бумаги три точки "А" и предложить ребёнку провести линию через две точки "А". Но как понять через какие? A A A

Линия — это множество точек. У неё измеряют только длину. Ширины и толщины она не имеет

Обозначается строчными (маленькими) латинскими буквами

линия a, линия b, линия c

a b c

Линия может быть

  1. замкнутой, если её начало и конец находятся в одной точке,
  2. разомкнутой, если её начало и конец не соединены

замкнутые линии

разомкнутые линии

Ты вышел из квартиры, купил в магазине хлеб и вернулся обратно в квартиру. Какая линия получилась? Правильно, замкнутая. Ты вернулся в исходную точку. Ты вышел из квартиры, купил в магазине хлеб, зашёл в подъезд и разговорился с соседом. Какая линия получилась? Разомкнутая. Ты не вернулся в исходную точку. Ты вышел из квартиры, купил в магазине хлеб. Какая линия получилась? Разомкнутая. Ты не вернулся в исходную точку.
  1. самопересекающейся
  2. без самопересечений

самопересекающиеся линии

линии без самопересечений

  1. прямой
  2. ломанной
  3. кривой

прямые линии

ломанные линии

кривые линии

Прямая линия — это линия которая не искривляется, не имеет ни начала, ни конца, её можно бесконечно продолжать в обе стороны

Даже когда виден небольшой участок прямой, предполагается, что она бесконечно продолжается в обе стороны

Обозначается строчной (маленькой) латинской буквой. Или двумя заглавными (большими) латинскими буквами — точками, лежащими на прямой

прямая линия a

a

прямая линия AB

B A

Прямые могут быть

  1. пересекающимися, если имеют общую точку. Две прямые могут пересекаться только в одной точке.
    • перпендикулярными, если пересекаются под прямым углом (90°).
  2. параллельными, если не пересекаются, не имеют общей точки.

параллельные линии

пересекающиеся линии

перпендикулярные линии

Луч — это часть прямой, которая имеет начало, но не имеет конца, её можно бесконечно продолжать только в одну сторону

У луча света на картинке начальной точкой является солнце

солнышко

Точка разделяет прямую на две части — два луча A A

Луч обозначается строчной (маленькой) латинской буквой. Или двумя заглавными (большими) латинскими буквами, где первая — это точка, с которой начинается луч, а вторая — точка, лежащая на луче

луч a

a

луч AB

B A

Лучи совпадают, если

  1. расположены на одной и той же прямой,
  2. начинаются в одной точке,
  3. направлены в одну сторону

лучи AB и AC совпадают

лучи CB и CA совпадают

C B A

Отрезок — это часть прямой, которая ограничена двумя точками, то есть она имеет и начало и конец, а значит можно измерить её длину. Длина отрезка — это расстояние между его начальной и конечной точками

Через одну точку можно провести любое число линий, в том числе прямых

Через две точки — неограниченное количество кривых, но только одну прямую

кривые линии, проходящие через две точки

B A

прямая линия AB

B A

От прямой «отрезали» кусочек и остался отрезок. Из примера выше видно, что его длина — наикратчайшее расстояние между двумя точками. ✂ B A ✂

Отрезок обозначается двумя заглавными(большими) латинскими буквами, где первая — это точка, с которой начинается отрезок, а вторая — точка, которой заканчивается отрезок

отрезок AB

B A

Задача: где прямая , луч , отрезок , кривая ?

Ломанная линия — это линия, состоящая из последовательно соединённых отрезков не под углом 180°

Длинный отрезок «поломали» на несколько коротких

Звенья ломаной (похожи на звенья цепи) — это отрезки, из которых состоит ломанная. Смежные звенья — это звенья, у которых конец одного звена является началом другого. Смежные звенья не должны лежать на одной прямой.

Вершины ломаной (похожи на вершины гор) — это точка, с которой начинается ломанная, точки, в которых соединяются отрезки, образующие ломаную, точка, которой заканчивается ломанная.

Обозначается ломанная перечислением всех её вершин.

ломанная линия ABCDE

вершина ломанной A, вершина ломанной B, вершина ломанной C, вершина ломанной D, вершина ломанной E

звено ломанной AB, звено ломанной BC, звено ломанной CD, звено ломанной DE

звено AB и звено BC являются смежными

звено BC и звено CD являются смежными

звено CD и звено DE являются смежными

A B C D E 64 62 127 52

Длина ломанной — это сумма длин её звеньев: ABCDE = AB + BC + CD + DE = 64 + 62 + 127 + 52 = 305

Задача: какая ломанная длиннее , а у какой больше вершин ? У первой линии все звенья одинаковой длины, а именно по 13см. У второй линии все звенья одинаковой длины, а именно по 49см. У третьей линии все звенья одинаковой длины, а именно по 41см.

Многоугольник — это замкнутая ломанная линия

Стороны многоугольника (помогут запомнить выражения: "пойти на все четыре стороны", "бежать в сторону дома", "с какой стороны стола сядешь?") — это звенья ломанной. Смежные стороны многоугольника — это смежные звенья ломанной.

Вершины многоугольника — это вершины ломанной. Соседние вершины — это точки концов одной стороны многоугольника.

Обозначается многоугольник перечислением всех его вершин.

замкнутая ломанная линия, не имеющая самопересечения, ABCDEF

многоугольник ABCDEF

вершина многоугольника A, вершина многоугольника B, вершина многоугольника C, вершина многоугольника D, вершина многоугольника E, вершина многоугольника F

вершина A и вершина B являются соседними

вершина B и вершина C являются соседними

вершина C и вершина D являются соседними

вершина D и вершина E являются соседними

вершина E и вершина F являются соседними

вершина F и вершина A являются соседними

сторона многоугольника AB, сторона многоугольника BC, сторона многоугольника CD, сторона многоугольника DE, сторона многоугольника EF

сторона AB и сторона BC являются смежными

сторона BC и сторона CD являются смежными

сторона CD и сторона DE являются смежными

сторона DE и сторона EF являются смежными

сторона EF и сторона FA являются смежными

A B C D E F 120 60 58 122 98 141

Периметр многоугольника — это длина ломанной: P = AB + BC + CD + DE + EF + FA = 120 + 60 + 58 + 122 + 98 + 141 = 599

Многоугольник с тремя вершинами называется треугольником, с четырьмя — четырёхугольником, с пятью — пятиугольником и т.д.


В этой статье мы подробно остановимся на одном из первичных понятий геометрии – на понятии прямой линии на плоскости. Сначала определимся с основными терминами и обозначениями. Далее обсудим взаимное расположение прямой и точки, а также двух прямых на плоскости, приведем необходимые аксиомы. В заключении, рассмотрим способы задания прямой на плоскости и приведем графические иллюстрации.

Навигация по странице.

Прямая на плоскости - понятие.

Прежде чем дать понятие прямой на плоскости, следует четко представлять себе что же представляет собой плоскость. Представление о плоскости позволяет получить, к примеру, ровная поверхность стола или стены дома. Следует, однако, иметь в виду, что размеры стола ограничены, а плоскость простирается и за пределы этих границ в бесконечность (как будто у нас сколь угодно большой стол).

Если взять хорошо заточенный карандаш и дотронуться его стержнем до поверхности «стола», то мы получим изображение точки. Так мы получаем представление о точке на плоскости .

Теперь можно переходить и к понятию прямой линии на плоскости .

Положим на поверхность стола (на плоскость) лист чистой бумаги. Для того чтобы изобразить прямую линию, нам необходимо взять линейку и провести карандашом линию на сколько это позволяют сделать размеры используемой линейки и листа бумаги. Следует отметить, что таким способом мы получим лишь часть прямой. Прямую линию целиком, простирающуюся в бесконечность, мы можем только вообразить.

Взаимное расположение прямой и точки.

Начать следует с аксиомы: на каждой прямой и в каждой плоскости имеются точки.

Точки принято обозначать большими латинскими буквами, например, точки А и F . В свою очередь прямые линии обозначают малыми латинскими буквами, к примеру, прямые a и d .

Возможны два варианта взаимного расположения прямой и точки на плоскости : либо точка лежит на прямой (в этом случае также говорят, что прямая проходит через точку), либо точка не лежит на прямой (также говорят, что точка не принадлежит прямой или прямая не проходит через точку).

Для обозначения принадлежности точки некоторой прямой используют символ «». К примеру, если точка А лежит на прямой а , то можно записать . Если точка А не принадлежит прямой а , то записывают .

Справедливо следующее утверждение: через любые две точки проходит единственная прямая.

Это утверждение является аксиомой и его следует принять как факт. К тому же, это достаточно очевидно: отмечаем две точки на бумаге, прикладываем к ним линейку и проводим прямую линию. Прямую, проходящую через две заданные точки (например, через точки А и В ), можно обозначать двумя этими буквами (в нашем случае прямая АВ или ВА ).

Следует понимать, что на прямой, заданной на плоскости, лежит бесконечно много различных точек, причем все эти точки лежат в одной плоскости. Это утверждение устанавливается аксиомой: если две точки прямой лежат в некоторой плоскости, то все точки этой прямой лежат в этой плоскости.

Множество всех точек, расположенных между двумя заданными на прямой точками, вместе с этими точками называют отрезком прямой или просто отрезком . Точки, ограничивающие отрезок, называются концами отрезка. Отрезок обозначают двумя буквами, соответствующими точкам концов отрезка. К примеру, пусть точки А и В являются концами отрезка, тогда этот отрезок можно обозначить АВ или ВА . Обратите внимание, что такое обозначение отрезка совпадает с обозначением прямой. Чтобы избежать путаницы, рекомендуем к обозначению добавлять слово «отрезок» или «прямая».

Для краткой записи принадлежности и не принадлежности некоторой точки некоторому отрезку используют все те же символы и . Чтобы показать, что некоторый отрезок лежит или не лежит на прямой пользуются символами и соответственно. К примеру, если отрезок АВ принадлежит прямой а , можно кратко записать .

Следует также остановиться на случае, когда три различных точки принадлежат одной прямой. В этом случае одна, и только одна точка, лежит между двумя другими. Это утверждение является очередной аксиомой. Пусть точки А , В и С лежат на одной прямой, причем точка В лежит между точками А и С . Тогда можно говорить, что точки А и С находятся по разные стороны от точки В . Также можно сказать, что точки В и С лежат по одну сторону то точки А , а точки А и В лежат по одну сторону от точки С .

Для полноты картины заметим, что любая точка прямой делит эту прямую на две части – два луча . Для этого случая дается аксиома: произвольная точка О , принадлежащая прямой, делит эту прямую на два луча, причем две любые точки одного луча лежат по одну сторону от точки О , а две любые точки разных лучей – по разные стороны от точки О .

Взаимное расположение прямых на плоскости.

Сейчас ответим на вопрос: «Как могут располагаться две прямые на плоскости относительно друг друга»?

Во-первых, две прямые на плоскости могут совпадать .

Это возможно в том случае, когда прямые имеют по крайней мере две общие точки. Действительно, в силу аксиомы, озвученной в предыдущем пункте, через две точки проходит единственная прямая. Иными словами, если через две заданные точки проходят две прямые, то они совпадают.

Во-вторых, две прямые на плоскости могут пересекаться .

В этом случае прямые имеют одну общую точку, которую называют точкой пересечения прямых. Пересечение прямых обозначают символом «», к примеру, запись означает, что прямые а и b пересекаются в точке М . Пересекающиеся прямые приводят нас к понятию угла между пересекающимися прямыми . Отдельно стоит рассмотреть расположение прямых на плоскости, когда угол между ними равен девяноста градусам. В этом случае прямые называются перпендикулярными (рекомендуем статью перпендикулярные прямые, перпендикулярность прямых). Если прямая a перпендикулярна прямой b , то можно использовать краткую запись .

В-третьих, две прямые на плоскости могут быть параллельными.

Прямую линию на плоскости с практической точки зрения удобно рассматривать вместе с векторами. Особое значение имеют ненулевые векторы, лежащие на данной прямой или на любой из параллельных прямых, их называют направляющими векторами прямой . В статье направляющий вектор прямой на плоскости даны примеры направляющих векторов и показаны варианты их использования при решении задач.

Также следует обратить внимание на ненулевые векторы, лежащие на любой из прямых, перпендикулярных данной. Такие векторы называют нормальными векторами прямой . О применении нормальных векторов прямой рассказано в статье нормальный вектор прямой на плоскости .

Когда на плоскости даны три и более прямых линии, то возникает множество различных вариантов их взаимного расположения. Все прямые могут быть параллельными, в противном случае некоторые или все из них пересекаются. При этом все прямые могут пересекаться в единственной точке (смотрите статью пучок прямых), а могут иметь различные точки пересечения.

Не будем подробно останавливаться на этом, а приведем без доказательства несколько примечательных и очень часто используемых фактов:

  • если две прямые параллельны третьей прямой, то они параллельны между собой;
  • если две прямые перпендикулярны третьей прямой, то они параллельны между собой;
  • если на плоскости некоторая прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую прямую.

Способы задания прямой на плоскости.

Сейчас мы перечислим основные способы, которыми можно задать конкретную прямую на плоскости. Это знание очень полезно с практической точки зрения, так как на нем основывается решение очень многих примеров и задач.

Во-первых, прямую можно задать, указав две точки на плоскости.

Действительно, из аксиомы, рассмотренной в первом пункте этой статьи, мы знаем, что через две точки проходит прямая, и притом только одна.

Если в прямоугольной системе координат на плоскости указаны координаты двух несовпадающих точек, то есть возможность записать уравнение прямой, проходящей через две заданные точки .


Во-вторых, прямую можно задать, указав точку, через которую она проходит, и прямую, которой она параллельна. Этот способ справедлив, так как через данную точку плоскости проходит единственная прямая, параллельная заданной прямой. Доказательство этого факта проводилось на уроках геометрии в средней школе.

Если прямую на плоскости задать таким способом относительно введенной прямоугольной декартовой системы координат, то есть возможность составить ее уравнение. Об этом написано в статье уравнение прямой, проходящей через заданную точку параллельно заданной прямой .


В-третьих, прямую можно задать, если указать точку, через которую она проходит, и ее направляющий вектор.

Если прямая линия задана в прямоугольной системе координат таким способом, то легко составить ее каноническое уравнение прямой на плоскости и параметрические уравнения прямой на плоскости .


Четвертый способ задания прямой заключается в том, что следует указать точку, через которую она проходит, и прямую, которой она перпендикулярна. Действительно, через заданную точку плоскости проходит единственная прямая, перпендикулярная данной прямой. Оставим этот факт без доказательства.


Наконец, прямую на плоскости можно задать, указав точку, через которую она проходит, и нормальный вектор прямой.

Если известны координаты точки, лежащей на заданной прямой, и координаты нормального вектора прямой, то есть возможность записать общее уравнение прямой .


Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

На уроке вы познакомитесь с понятием плоскости, с различными минимальными фигурами, которые есть в геометрии, и изучите их свойства. Узнаете, что такое прямая, отрезок, луч, угол и др.

Все геометрические фигуры мы изображаем на листе бумаги карандашом, на школьной доске мелом или маркером. Часто летом мелом или белым камушком мы рисуем фигуры на асфальте. И всегда, прежде чем начинать рисовать задуманное, мы оцениваем, хватит ли нам места. А так как мы редко знаем точные размеры нашего будущего рисунка, то всегда места нужно взять с запасом, и лучше с большим запасом. Обычно мы не боимся, что место для рисования кончится, если поле для рисования во много раз больше, чем сам рисунок. Так асфальта во дворе вполне хватит, чтобы начертить поле для прыганья. Тетрадного листа достаточно, чтобы посредине начертить два пересекающихся отрезка.

В математике таким полем, на котором мы все изображаем, является плоскость (рис. 1).

Рис. 1. Плоскость

Она обладает двумя качествами:

1. На ней можно изобразить любую фигуру, про которую мы уже говорили, или еще будем говорить.

2. Мы не дойдем до края. Ее размеры можно считать намного большими, чем размеры рисунка.

То обстоятельство, что мы никогда не доходим до края плоскости, можно понимать как отсутствие краев вообще. Нам не нужны ее края, вот мы и договорились считать, что их нет (рис. 2).

Рис. 2. Плоскость бесконечна

В этом смысле плоскость бесконечна в любую сторону.

Мы можем представлять ее как большой лист бумаги, большую ровную асфальтовую площадку или огромную доску для рисования.

Геометрических фигур бесконечное множество, и изучить их все совершенно невозможно. Но геометрия устроена во многом как конструктор. Есть несколько видов основных деталей, из которых можно построить все остальное, любую самую сложную постройку.

Этот принцип можно сравнить со словами и буквами: мы знаем все буквы, но не знаем всех слов. Встретив незнакомое слово, мы сможем его прочитать, так как знаем, как буквы пишутся и как произносятся соответствующие звуки.

Так и в математике - существует совсем немного основных геометрических фигур, которые нам с вами нужно хорошо знать.

Рассмотрим отрезок (рис. 3). Отрезок - это кратчайшая линия, соединяющая две точки.

Рис. 3. Отрезок

Продолжим отрезок в обе стороны до бесконечности. Продолжать будем тоже прямо.

Что значит «прямо»? Рассмотрим отрезки и (рис. 4).

Рис. 4. Отрезки и

Продолжим их в обе стороны. Верхняя линия прямая, а нижняя нет (рис. 5).

Добавим еще по одной точке на верхнюю и нижнюю линию и (рис. 6). Часть верхней линии между точками и тоже является отрезком, а часть нижней линии между точками и отрезком не является, так как он не соединяет эти точки по самому короткому пути.

Рис. 6. Продолжение линий и

Прямая - это линия, продолжающаяся бесконечно в обе стороны, любая часть которой, ограниченная двумя точками, является отрезком.

Прямая - это тип линии, и, как любая линия, прямая является фигурой. И, как для любой линии, данная точка либо принадлежит данной прямой, либо нет (рис. 7).

Рис. 7. Точки и , принадлежащие прямой, и точки и , не принадлежащие прямой

1. Прямая делит плоскость на две части, на две полуплоскости. На рисунке 8 точки и лежат в одной полуплоскости, а и - в разных полуплоскостях.

Рис. 8. Две полуплоскости

2. Через две точки всегда можно провести прямую, причем только одну (рис. 9).

Прямую, как и любую линию, можно отметить одной строчной буквой латинского алфавита или последовательностью точек, которые на ней лежат. Чтобы обозначить прямую через точки, лежащие на ней, достаточно двух точек.

Продлив отрезок в обе стороны до бесконечности, получили прямую. Если так же продлить отрезок, но всего лишь в одну сторону до бесконечности, получим фигуру, которая называется луч (рис. 10). Этот геометрический луч очень похож на световой луч, поэтому он так и называется. Если взять в руки лазерную указку, то луч света будет начинаться в указке и уходить в бесконечность по прямой.

Рис. 10. Луч

Точка называется началом луча. Обозначается луч .

Если на прямой отметить точку , то она делит эту прямую на два луча (рис. 11). Оба луча имеют начало в точке , но направлены в разные стороны. Два этих луча составляют прямую, являются ее половинами. Поэтому луч часто еще называют «полупрямая».

Рис. 11. Точка делит прямую на два луча

Рассмотрим рисунок 12.


Рис. 12. Отрезок, прямая и луч

Разберемся, в чем похожи и не похожи друг на друга отрезок, прямая и луч:

Отрезок и луч легко достраиваются до прямой, отрезок для этого нужно продолжить в обе стороны, а луч в одну;

На прямой всегда можно выделить отрезок или луч;

Точка делит прямую на два луча, на две полупрямые;

Точки и ограничивают на прямой отрезок ;

Все эти фигуры: отрезок, луч, прямая - являются «прямыми линиями». Различаются они наличием концов. У отрезка их два, у луча один, у прямой ни одного. Иначе можно сказать еще так: и луч, и отрезок являются частью прямой;

Нам известно, что у отрезка можно измерить его длину. Два отрезка можно сравнить, выяснить, какой из них длиннее;

Прямая же бесконечно продолжается в обе стороны, луч - в одну сторону. По этой причине невозможно измерить длину прямой или луча, также невозможно сравнить по длине две прямых или два луча. Они все одинаково бесконечны.

Два луча, имеющие свои начала в одной точке, образуют еще одну геометрическую фигуру из основного набора - угол. Точка, начало обоих лучей, называется вершиной угла. Сами лучи называются сторонами угла.

Итак, угол - это фигура, состоящая из двух лучей, выходящих из одной точки (рис. 13).

Рис. 13. Угол

Обозначают угол одной буквой, соответствующей обозначению вершины. В данном случае угол можно назвать угол (рис. 14). Чтобы было понятно, что речь идет именно об угле, а не о точке, перед его названием надо написать слово «угол» или поставить специальный знак угла («»).

Рис. 14. Угол

Если по вершине сложно понять, о каком именно угле идет речь, как на рисунке 15, то используют еще две точки на обеих сторонах угла.

Если просто назвать угол на этом рисунке, то непонятно, о каком конкретно идет речь, ведь с вершиной в точке мы видим несколько углов. Поэтому на стороны нужного нам угла добавим по точке и угол обозначим как (рис. 15).

Рис. 15. Угол

Можно при обозначении пойти в обратную сторону, но чтобы опять вершина оказалась в середине записи .

Еще одно распространенное обозначение - одной греческой буквой: альфа, бета, гамма и так далее (рис. 16). В этом случае букву вписывают обычно внутрь угла (рис. 17).

Рис. 16. Греческий алфавит

Рис. 17. Название угла, записанное внутри угла

Так, на рисунке 18 обозначения , , являются эквивалентными, обозначают один и тот же угол.

Рис. 18. , , - один и тот же угол

Пусть две прямые и пересекаются в точке (рис. 19). Точка делит каждую прямую на два луча, то есть всего 4 луча. Каждая пара лучей задает угол.

Рис. 19. Прямые и образуют 4 луча

Например, , , .

Через две точки и всегда можно провести прямую. Так ли это с тремя точками?

На рисунке 20 через три точки можно провести прямую, а на рисунке 21 - нельзя.

Рис. 20. Через три точки можно провести прямую

Рис. 21. Через три точки нельзя провести прямую

Про три точки на рисунке говорят, что они лежат на одной прямой. Так говорят, даже если сама прямая не начерчена, просто подразумевая, что ее можно провести. Во втором случае говорят, что точки не лежат на одной прямой, подразумевая, что провести прямую через все три точки невозможно.

Если мы соединим последовательно сначала 1-ю и 2-ю точки, потом 2-ю и 3-ю, то полученная линия называется ломаной (рис. 22). Название следует из ее внешнего вида.

Рис. 22. Ломаная

Аналогично ломаной можно соединить любое количество точек. Точки , , , , называются вершинами ломаной, отрезки , , , - звеньями ломаной.

Обозначается ломаная своими вершинами .

Рис. 23. Ломаная

Если последнюю точку соединить с первой, то полученная ломаная называется замкнутой (рис. 24).

Рис. 24. Замкнутая ломаная

Какую ломаную можно построить с минимальным набором вершин и звеньев? Если есть две точки, то их можно соединить отрезком. Это и будет самым простым примером ломаной: две вершины и одно звено, их соединяющее. Можно сказать, что отрезок - это минимальная ломаная.

Если требуется, чтобы ломаная была замкнута, то самой простой такой ломаной будет треугольник. Если взять две точки, то соединить последнюю точку с первой получится только тем же самым отрезком, который уже есть. То есть ломаная останется, как и раньше, незамкнутой. А если добавить еще одну точку, не лежащую на одной прямой с точками и , соединить тремя отрезками все точки, получится треугольник (рис. 25).

Рис. 25. Треугольник

Треугольник - это замкнутая ломаная с тремя вершинами. Или даже так: треугольник - это минимальная замкнутая ломаная.

Точки , и - это вершины треугольника. Отрезки, их соединяющие, звенья ломаной, называются сторонами треугольника.

Обозначается треугольник по своим вершинам. Например, . Перед обозначением нужно поставить слово «треугольник» или специальный символ треугольника («»).

Треугольник подразумевает три угла. Из каждой из вершин исходит по две стороны, то есть стороны треугольника являются сторонами углов (рис. 26).

Рис. 26. Углы треугольника

Таким образом, треугольник имеет три вершины (три точки , и ), три стороны (три отрезка , и ).

Посещая дополнительные занятия мы поняли, что не умеем оперировать понятиями точка, линия, угол, луч, отрезок, прямая, кривая, замкнутая линии и рисовать их, точнее рисовать можем, но идентифицировать не получается.

Дети должны различать линии, кривые, окружности. Это развивает у них графику и чувство правильности при занятиях рисованием, аппликацией. Важно знать, какие основные геометрические фигуры существую, что из себя представляют. Разложите карточки перед ребенком, попросите нарисовать точно так же как на картинке. Повторите несколько раз.

На занятиях нам выдали следующие материалы:

Небольшая сказка.

В стране Геометрии жила-была точка. Она была маленькой. Ее оставил карандаш, когда наступил на лист тетради, и никто ее не замечал. Так и жила она, пока не попала в гости к линиям. (На доске рисунок.)

Посмотрите, какие это были линии. (Прямые и кривые.)

Прямые линии похожи на натянутые веревочки, а веревочки, которые не натянули, - это кривые линии.

Сколько прямых линий? (2.)

Сколько кривых? (3.)

Прямая линия начала хвастаться: «Я самая длинная! У меня нет ни начала, ни конца! Я бесконечная!»

Очень интересно стало точке посмотреть на нее. Сама-то точка малюсенькая. Вышла она да так увлеклась, что не заметила, как наступила на прямую линию. И вдруг исчезла прямая линия. На ее месте появился луч.

Он тоже был очень длинный, но все-таки не такой, как прямая линия. У него появилось начало.

Испугалась точка: «Что же я наделала!» Хотела она убежать, да как назло наступила опять на луч.

И на месте луча появился отрезок. Он не хвастался, какой он большой, у него уже были и начало, и конец.

Вот так маленькая точка смогла изменить жизнь больших линий.

Так кто догадался кто вместе с котиком пришел к нам в гости?(прямая линия, луч, отрезок и точка)

Правильно вместе с котиком пришли прямая линия, луч, отрезок и точка к нам на урок.

Кто догадался, что мы будем делать на этом уроке? (Учиться распознавать и чертить прямую линию, луч, отрезок.)

О каких линиях вы узнали? (О прямой, луче, отрезке.)

Что узнали о прямой линии? (Она не имеет ни начала, ни конца. Она бесконечная.)

(Берем две катушки ниток, натягивает их, изображая прямую линию, и разматывая то одну, то другую, демонстрирует, что прямую можно продолжать в оба конца до бесконечности.)

Что узнали о луче? (У него есть начало, но нет конца.) (Педагог берет ножницы, разрезает нитку. Показывает, что теперь линию можно продолжать только в один конец.)

Что узнали об отрезке? (Унего есть и начало, и конец.) (Педагог отрезает другой конец нитки и показывает, что нитка не тянется. У нее есть и начало, и конец.)

Как начертить прямую линию? (Провести по линейке линию.)

Как начертить отрезок? (Поставить две точки и соединить их.)

И конечно прописи:










Точка и прямая являются основными геометрическими фигурами на плоскости.

Древнегреческий учёный Евклид говорил: «точка» – это то, что не имеет частей». Слово «точка» в переводе с латинского языка означает результат мгновенного касания, укол. Точка является основой для построения любой геометрической фигуры.

Прямая линия или просто прямая – это линия, вдоль которой расстояние между двумя точками является кратчайшим. Прямая линия бесконечна, и изобразить всю прямую и измерить её невозможно.

Точки обозначают заглавными латинскими буквами А, В, С, D, Е и др., а прямые теми же буквами, но строчными а, b, c, d, e и др. Прямую можно обозначить и двумя буквами, соответствующими точкам, лежащим на ней. Например, прямую a можно обозначить АВ.

Можно сказать, что точки АВ лежат на прямой а или принадлежат прямой а. А можно сказать, что прямая а проходит через точки А и В.

Простейшие геометрические фигуры на плоскости – это отрезок, луч, ломаная линия.

Отрезок – это часть прямой, которая состоит из всех точек этой прямой, ограниченных двумя выбранными точками. Эти точки – концы отрезка. Отрезок обозначается указанием его концов.

Луч или полупрямая – это часть прямой, которая состоит из всех точек этой прямой, лежащих по одну сторону от данной её точки. Эта точка называется начальной точкой полупрямой или началом луча. Луч имеет точку начала, но не имеет конца.

Полупрямые или лучи обозначаются двумя строчными латинскими буквами: начальной и любой другой буквой, соответствующей точке, принадлежащей полупрямой. При этом начальная точка ставится на первом месте.

Получается, что прямая бесконечна: у неё нет ни начала, ни конца; у луча есть только начало, но нет конца, а отрезок имеет начало и конец. Поэтому только отрезок мы можем измерить.

Несколько отрезков, которые последовательно соединены между собой так, что имеющие одну общуюточкуотрезки (соседние) располагаются не на одной прямой, представляют собой ломаную линию.

Ломаная линия может быть замкнутой и незамкнутой. Если конец последнего отрезка совпадает с началом первого, перед нами замкнутая ломаная линия, если же нет – незамкнутая.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.